Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`Answer:`
Trường hợp 1: Nếu `x>=1` thì: \(x^{2016}\ge x^{2015};x^2\ge x\)
\(\Rightarrow x^{2016}-x^{2015}+x^2-x+1\ge1\forall x\ge1\)
`=>` Vô nghiệm
Trường hợp 2: Nếu `x<=0` thì: \(-x^{2015}\ge0;-x\ge0\)
`=>` Vô nghiệm
Trường hợp 3: Nếu `0<x<1`, giả dụ đa thức trên có nghiệm:
\(x^{2016}-x^{2015}+x^2-x+1=0\text{(*)}\)
\(\Rightarrow x^{2015}-x^{2014}+x-1+\frac{1}{x}=0\text{(**)}\)
Ta cộng lần lượt hai vế của (*)(**), ta được:
\(x^{2016}-x^{2014}+x^2+\frac{1}{x}=0\)
\(\Rightarrow x^{2016}+x^2+\frac{1}{x}=x^{2014}\left(***\right)\)
Điều này vô lí bởi với `0<x<1<=>x^2>x^2014`
\(x^{2016}>0;\frac{1}{x}>0\)
\(\Rightarrow x^{2016}+x^2+\frac{1}{x}>x^{2014}\)
Ta có:
x(x-2) >/= 0 với mọi x thuộc R và 2015>0.
=> x(x-2)+2015 > 0 với mọi x thuộc R.
Vậy đa thức đó không có nghiệm.
x(x-2) + 2015
= x^2 - 2x + 2015
= ( x^2 - 2x + 1 ) + 2014
= ( x - 1 )^2 + 2014
Mà (x - 1 )^2 ≥ 0 với mọi x
=) Đa thức trên ≥ 2014
Vậy đa thức vô nghiệm
x2+(x-3)2
=x2+(x-3)(x-3)
=x2+x2-3x-3x-3
=2x2-6x-3
=2x2-4x-2-1-2x
=2(x2-2x-1)-1-2x
=2(x-1)2-2x=1\(\ne0\)
=> Vô nghiệm
vì x2 lớn hơn hoặc bằng 0
=> x2 - 2x lớn hơn hoặc bằng 0
=> x2 - 2x + 2015 lớn hớn hoặc bằng 2015 > 0
=> đa thức f(x) ko có nghiệm
Có B(x)=x^2+x+1
= (x^2+0,5x)+(0,5x+0,25)+0,75
=x(x+0,5)+0,5(x+0,5)+0,75
=(x+0,5)^2+0,75
Có (x+0,5)^2 >=0
=> (x+0,5)^2+0,75>=0,75>0
Vậy đa thức đó vô nghiệm
ta co x^2 co gia tri lon hon hoac bang 0 voi moi x.nen x^2+x+1 co gia tri lon hon voi moi x
vay H(x)khong co nghiem
x2+2x+2=(x2+2x+1)+1=(x+1)2+1>0 với mọi x
suy ra đa thức đã cho vô nghiệm
tinh denta phay = 1^2 - 4.1.2 = -7 . vi denta < 0 nen pt vo nghiem
x3 - x + 2015 = 0
x3 - x = -2015
x2.(x - 1) = -2015 = 3.67
Giả sử x2 = 1 => x = 1
=> biểu thức = 0
x2 = 1 => x = -1
=> Biểu thức = -2
Vì x2 = 1 không thõa mãn trong khi 3 ; 67 không có số nào là lũy thừa bậc 2
Vậy đa thức vô nghiệm
Ta có :
x3>0
-x<0
2015<0
Từ trên suy ra : đa thức trên không có nghiệm