Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^{2015}}{c^{2015}}=\frac{b^{2015}}{d^{2015}}\). Áp dụng tính chất tỉ dãy số bằng nhau. Ta có:
\(\frac{a^{2015}}{c^{2015}}=\frac{b^{2015}}{d^{2015}}=\frac{a^{2015}-b^{2015}}{c^{2015}-d^{2015}}\)
Mặt khác: \(\left(\frac{a-b}{c-d}\right)^{2015}=\frac{\left(a-b\right)^{2015}}{\left(c-d\right)^{2015}}\ne\frac{a^{2015}-b^{2015}}{c^{2015}-d^{2015}}\)
Do vậy không thể chứng minh được đề bài. Suy ra: Đề sai!!!!
Do một số bạn phản ánh về lời giải của mình nên mình quyết định giải lại nhằm bảo vệ danh dự của mình =)))
Giải
Theo giả thiết, áp dụng tỉ lệ thức: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Theo t/c dãy tỉ số bằng nhau ,ta có: \(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\Rightarrow\frac{a^{2015}}{c^{2015}}=\frac{b^{2015}}{d^{2015}}=\left(\frac{a-b}{c-d}\right)^{2015}\) (1)
Mặt khác, áp dụng tính chất dãy tỉ số bằng nhau lần nữa ta có: \(\frac{a^{2015}}{c^{2015}}=\frac{b^{2015}}{d^{2015}}=\frac{a^{2015}-b^{2015}}{c^{2015}-d^{2015}}\) (2)
Từ (1) và (2) ta có: \(\hept{\begin{cases}\left(\frac{a-b}{c-d}\right)^{2015}=\frac{a^{2015}}{c^{2015}}=\frac{b^{2015}}{d^{2015}}\\\frac{a^{2015}-b^{2015}}{c^{2015}-d^{2015}}=\frac{a^{2015}}{c^{2015}}=\frac{b^{2015}}{d^{2015}}\end{cases}\Leftrightarrow\left(\frac{a-b}{c-d}\right)^{2015}=\frac{a^{2015}-b^{2015}}{c^{2015}-d^{2015}}^{\left(đpcm\right)}}\)
vì khi phá ngoặc ta sẽ đoi dấu (-)=>(+)
nên hai vế bằng nhau
chỉ cần giải thể là có điểm rùi bạn ơi
điểm tối đa nghe
cảm ơn mình bằng cách tích dựng nhà
vì a/b=c/d nên áp dung TC của dãy tỉ số bằng nhau có a/b=c/d=(a-b)/(c-d)
suy ra a2015/b2015=c2015/d2015=(a-b)2015/(c-d)2015 (1)
Áp dụng TC của dãy tỉ số bằng nhau lần nữa sẽ có :
a2015/b2015=c2015/d2015=(a2015+b2015)/(c2015+d2015) (2)
từ (1) và (2) suy ra dpcm
k cho mik nha
a/b=c/d
=>a/c=b/d=a+b/c+d
=>(a/c)2015=(b/d)2015=(a+b/c+d)2015
=>a2015/c2015=b2015/d2015=(a+b/c+d)2015=a2015+b2015/c2015+d2015(dpcm)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Áp dụng t/c dãy tỉ số bằng nhau,ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{a+n}{c+d}\Rightarrow\frac{a^{2015}}{c^{2015}}=\frac{b^{2015}}{d^{2015}}=\left(\frac{a+b}{c+d}\right)^{2015}\) (1)
Mặt khác,áp dụng t/c dãy tỉ số bằng nhau lần nữa,ta có: \(\frac{a^{2015}}{c^{2015}}=\frac{b^{2015}}{d^{2015}}=\frac{a^{2015}+b^{2015}}{c^{2015}+d^{2015}}\) (2)
Từ (1) và (2) có: \(\left(\frac{a+b}{c+d}\right)^{2015}=\frac{a^{2015}+b^{2015}}{c^{2015}+d^{2015}}\)
Ta có:
\(A=\frac{2015a}{ab+2015a+2015}+\frac{b}{bc+b+2015}+\frac{c}{ac+c+1}\)
\(\Rightarrow A=\frac{abca}{ab+abca+abc}+\frac{b}{bc+b+abc}+\frac{c}{ac+c+1}\)
\(\Rightarrow A=\frac{a^2bc}{ab.\left(1+ac+c\right)}+\frac{b}{b.\left(c+1+ac\right)}+\frac{c}{ac+c+1}\)
\(\Rightarrow A=\frac{ac}{1+ac+c}+\frac{1}{c+1+ac}+\frac{c}{ac+c+1}\)
\(\Rightarrow A=\frac{ac}{ac+1+c}+\frac{1}{ac+1+c}+\frac{c}{ac+1+c}\)
\(\Rightarrow A=\frac{ac+1+c}{ac+1+c}\)
\(\Rightarrow A=1.\)
Vậy \(A=1.\)
Chúc bạn học tốt!
Thay $abc=2015$ vào $A$ ta có:
\(\begin{array}{l} A = \dfrac{{{a^2}bc}}{{ab + {a^2}bc + abc}} + \dfrac{b}{{bc + b + abc}} + \dfrac{c}{{ac + c + 1}}\\ A = \dfrac{{{a^2}bc}}{{ab\left( {1 + ac + c} \right)}} + \dfrac{b}{{b\left( {c + 1 + ac} \right)}} + \dfrac{c}{{ac + c + 1}}\\ A = \dfrac{{ac}}{{ac + c + 1}} + \dfrac{1}{{ac + c + 1}} + \dfrac{c}{{ac + c + 1}}\\ A = \dfrac{{ac + c + 1}}{{ac + c + 1}} = 1 \end{array}\)
theo bài ra ta có
\(\frac{a^{2015}}{b^{2017}+c^{2019}}=\frac{b^{2017}}{a^{2015}+c^{2019}}=\frac{c^{2019}}{a^{2015}+b^{2017}}\)
=>\(\frac{a^{2015}}{b^{2017}+c^{2019}}+1=\frac{b^{2017}}{a^{2015}+c^{2019}}+1=\frac{c^{2019}}{a^{2015}+b^{2017}}+1\)
=> \(\frac{a^{2015}+b^{2017}+c^{2019}}{b^{2017}+c^{2019}}=\frac{a^{2015}+b^{2017}+c^{2019}}{a^{2015}+c^{2019}}=\frac{a^{2015}+b^{2017}+c^{2019}}{a^{2015}+b^{2017}}\)
- nếu a2015+ b2017 +c2019 = 0
=> b2017+ c2019 = -(a2015) (1)
=> a2015+ c2019= -(b2017) (2)
=> a2015+ b2017= -(c2019) (3)
thay 1, 2, 3 vào S ta có:
S = \(\frac{b^{2017}+c^{2019}}{a^{2015}}+\frac{a^{2015}+c^{2019}}{b^{2017}}+\frac{a^{2015}+b^{2017}}{c^{2019}}\)
=> S =\(\frac{-\left(a^{2015}\right)}{a^{2015}}+\frac{-\left(b^{2017}\right)}{b^{2017}}+\frac{-\left(c^{2019}\right)}{c^{2019}}\)
S = -1 + -1 + -1
S = -3
vậy S ko phụ thuộc vào giá trị a,b,c
- nếu a2015+b2017+c2019 khác 0
=> b2017+c2019 = a2015+c2019=a2015+b2017
=> b2017 = a2015 = c2019
=>S=\(\frac{b^{2017}+c^{2019}}{a^{2015}}+\frac{a^{2015}+c^{2019}}{b^{2017}}+\frac{a^{2015}+b^{2017}}{c^{2019}}=\frac{2a^{2015}}{a^{2015}}+\frac{2b^{2017}}{b^{2017}}+\frac{2c^{2019}}{c^{2019}}=2+2+2=6\)
VẬY S ko phụ thuộc vào các giá trị của a,b,c
từ 2 trường hợp trên => giá trị của biểu thức S ko phụ thuộc vào giá trị của a,b,c (đpcm)
tick cho mình vài cái cho đủ 100 điểm hỏi đáp đi