K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 9 2018

Ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^{2015}}{c^{2015}}=\frac{b^{2015}}{d^{2015}}\). Áp dụng tính chất tỉ dãy số bằng nhau. Ta có:

\(\frac{a^{2015}}{c^{2015}}=\frac{b^{2015}}{d^{2015}}=\frac{a^{2015}-b^{2015}}{c^{2015}-d^{2015}}\)

Mặt khác: \(\left(\frac{a-b}{c-d}\right)^{2015}=\frac{\left(a-b\right)^{2015}}{\left(c-d\right)^{2015}}\ne\frac{a^{2015}-b^{2015}}{c^{2015}-d^{2015}}\)

Do vậy không thể chứng minh được đề bài. Suy ra: Đề sai!!!!

23 tháng 9 2018

Do một số bạn phản ánh về lời giải của mình nên mình quyết định giải lại nhằm bảo vệ danh dự của mình =)))

 Giải

Theo giả thiết, áp dụng tỉ lệ thức: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

Theo t/c dãy tỉ số bằng nhau ,ta có: \(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\Rightarrow\frac{a^{2015}}{c^{2015}}=\frac{b^{2015}}{d^{2015}}=\left(\frac{a-b}{c-d}\right)^{2015}\) (1)

Mặt khác, áp dụng tính chất dãy tỉ số bằng nhau lần nữa ta có: \(\frac{a^{2015}}{c^{2015}}=\frac{b^{2015}}{d^{2015}}=\frac{a^{2015}-b^{2015}}{c^{2015}-d^{2015}}\) (2)

Từ (1) và (2) ta có: \(\hept{\begin{cases}\left(\frac{a-b}{c-d}\right)^{2015}=\frac{a^{2015}}{c^{2015}}=\frac{b^{2015}}{d^{2015}}\\\frac{a^{2015}-b^{2015}}{c^{2015}-d^{2015}}=\frac{a^{2015}}{c^{2015}}=\frac{b^{2015}}{d^{2015}}\end{cases}\Leftrightarrow\left(\frac{a-b}{c-d}\right)^{2015}=\frac{a^{2015}-b^{2015}}{c^{2015}-d^{2015}}^{\left(đpcm\right)}}\)

2 tháng 2 2016

vì khi phá ngoặc ta sẽ đoi dấu (-)=>(+)

nên hai vế bằng nhau 

 

 

chỉ cần giải thể là có điểm rùi bạn ơi

điểm tối đa nghe

cảm ơn mình bằng cách tích dựng nhà

23 tháng 10 2017

vì a/b=c/d nên áp dung TC của dãy tỉ số bằng nhau có a/b=c/d=(a-b)/(c-d)

suy ra a2015/b2015=c2015/d2015=(a-b)2015/(c-d)2015 (1)

Áp dụng TC của dãy tỉ số bằng nhau lần nữa sẽ có :

a2015/b2015=c2015/d2015=(a2015+b2015)/(c2015+d2015) (2)

từ (1) và (2) suy ra dpcm

k cho mik nha

2 tháng 9 2015

a/b=c/d

=>a/c=b/d=a+b/c+d

=>(a/c)2015=(b/d)2015=(a+b/c+d)2015

=>a2015/c2015=b2015/d2015=(a+b/c+d)2015=a2015+b2015/c2015+d2015(dpcm)

7 tháng 10 2018

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

Áp dụng t/c dãy tỉ số bằng nhau,ta có:

\(\frac{a}{c}=\frac{b}{d}=\frac{a+n}{c+d}\Rightarrow\frac{a^{2015}}{c^{2015}}=\frac{b^{2015}}{d^{2015}}=\left(\frac{a+b}{c+d}\right)^{2015}\) (1)

Mặt khác,áp dụng t/c dãy tỉ số bằng nhau lần nữa,ta có: \(\frac{a^{2015}}{c^{2015}}=\frac{b^{2015}}{d^{2015}}=\frac{a^{2015}+b^{2015}}{c^{2015}+d^{2015}}\) (2)

Từ (1) và (2) có: \(\left(\frac{a+b}{c+d}\right)^{2015}=\frac{a^{2015}+b^{2015}}{c^{2015}+d^{2015}}\)

22 tháng 1 2020

Ta có:

\(A=\frac{2015a}{ab+2015a+2015}+\frac{b}{bc+b+2015}+\frac{c}{ac+c+1}\)

\(\Rightarrow A=\frac{abca}{ab+abca+abc}+\frac{b}{bc+b+abc}+\frac{c}{ac+c+1}\)

\(\Rightarrow A=\frac{a^2bc}{ab.\left(1+ac+c\right)}+\frac{b}{b.\left(c+1+ac\right)}+\frac{c}{ac+c+1}\)

\(\Rightarrow A=\frac{ac}{1+ac+c}+\frac{1}{c+1+ac}+\frac{c}{ac+c+1}\)

\(\Rightarrow A=\frac{ac}{ac+1+c}+\frac{1}{ac+1+c}+\frac{c}{ac+1+c}\)

\(\Rightarrow A=\frac{ac+1+c}{ac+1+c}\)

\(\Rightarrow A=1.\)

Vậy \(A=1.\)

Chúc bạn học tốt!

22 tháng 1 2020

Thay $abc=2015$ vào $A$ ta có:

\(\begin{array}{l} A = \dfrac{{{a^2}bc}}{{ab + {a^2}bc + abc}} + \dfrac{b}{{bc + b + abc}} + \dfrac{c}{{ac + c + 1}}\\ A = \dfrac{{{a^2}bc}}{{ab\left( {1 + ac + c} \right)}} + \dfrac{b}{{b\left( {c + 1 + ac} \right)}} + \dfrac{c}{{ac + c + 1}}\\ A = \dfrac{{ac}}{{ac + c + 1}} + \dfrac{1}{{ac + c + 1}} + \dfrac{c}{{ac + c + 1}}\\ A = \dfrac{{ac + c + 1}}{{ac + c + 1}} = 1 \end{array}\)

24 tháng 11 2016

theo bài ra ta có

\(\frac{a^{2015}}{b^{2017}+c^{2019}}=\frac{b^{2017}}{a^{2015}+c^{2019}}=\frac{c^{2019}}{a^{2015}+b^{2017}}\)

=>\(\frac{a^{2015}}{b^{2017}+c^{2019}}+1=\frac{b^{2017}}{a^{2015}+c^{2019}}+1=\frac{c^{2019}}{a^{2015}+b^{2017}}+1\)

=> \(\frac{a^{2015}+b^{2017}+c^{2019}}{b^{2017}+c^{2019}}=\frac{a^{2015}+b^{2017}+c^{2019}}{a^{2015}+c^{2019}}=\frac{a^{2015}+b^{2017}+c^{2019}}{a^{2015}+b^{2017}}\)

  • nếu a2015+ b2017 +c2019 = 0

=> b2017+ c2019 = -(a2015) (1)

=> a2015+ c2019= -(b2017) (2)

=> a2015+ b2017= -(c2019) (3)

thay 1, 2, 3 vào S ta có:

S = \(\frac{b^{2017}+c^{2019}}{a^{2015}}+\frac{a^{2015}+c^{2019}}{b^{2017}}+\frac{a^{2015}+b^{2017}}{c^{2019}}\)

=> S =\(\frac{-\left(a^{2015}\right)}{a^{2015}}+\frac{-\left(b^{2017}\right)}{b^{2017}}+\frac{-\left(c^{2019}\right)}{c^{2019}}\)

S = -1 + -1 + -1

S = -3

vậy S ko phụ thuộc vào giá trị a,b,c

  • nếu a2015+b2017+c2019 khác 0

=> b2017+c2019 = a2015+c2019=a2015+b2017

=> b2017 = a2015 = c2019

=>S=\(\frac{b^{2017}+c^{2019}}{a^{2015}}+\frac{a^{2015}+c^{2019}}{b^{2017}}+\frac{a^{2015}+b^{2017}}{c^{2019}}=\frac{2a^{2015}}{a^{2015}}+\frac{2b^{2017}}{b^{2017}}+\frac{2c^{2019}}{c^{2019}}=2+2+2=6\)

VẬY S ko phụ thuộc vào các giá trị của a,b,c

từ 2 trường hợp trên => giá trị của biểu thức S ko phụ thuộc vào giá trị của a,b,c (đpcm)

26 tháng 11 2016

thanks you :)