Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Đặt \(ƯCLN\left(5n+3,6n+1\right)=d\) với \(d\ne1\)
\(\Rightarrow\left\{{}\begin{matrix}5n+3⋮d\\6n+1⋮d\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}30n+18⋮d\\30n+5⋮d\end{matrix}\right.\)
\(\Rightarrow13⋮d\)
\(\Rightarrow d\in\left\{1,13\right\}\)
Nhưng vì \(d\ne1\) nên \(d=13\). Vậy \(ƯCLN\left(5n+3,6n+1\right)=13\)
2. Gọi \(ƯCLN\left(4n+3,5n+4\right)=d\)
\(\Rightarrow\left\{{}\begin{matrix}4n+3⋮d\\5n+4⋮d\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}20n+15⋮d\\20n+16⋮d\end{matrix}\right.\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy \(ƯCLN\left(4n+3,5n+4\right)=1\) nên 2 số này nguyên tố cùng nhau. (đpcm)
3: Tương tự 2 nhưng khi đó \(d\in\left\{1,2\right\}\). Nhưng vì cả 2 số \(2n+1,6n+5\) đều là số lẻ nên chúng không thể có ƯC là 2. Vậy \(d=1\)
4. Tương tự 3.
Bạn nên tách riêng rẽ từng bài ra để đăng cho mọi người quan sát dễ hơn nhé.
\(a,d=ƯCLN\left(5n+2;2n+1\right)\\ \Rightarrow2\left(5n+2\right)⋮d;5\left(2n+1\right)⋮d\\ \Rightarrow\left[5\left(2n+1\right)-2\left(5n+2\right)\right]⋮d\\ \Rightarrow-1⋮d\Rightarrow d=1\)
Suy ra ĐPCM
Cmtt với c,d
Gọi ƯCLN(2n + 1 ; 5n + 2 ) = d
2n + 1 \(\Rightarrow\)(2n + 1) = 10n + 4
5n + 2\(\Rightarrow\) 2 (5n + 2) = 10n + 5
Xét hiệu ( 10n +5 ) - ( 10n + 4 ) = 10n - 10n +5 - 4 = 1
\(\Rightarrow\)1 \(⋮\)d \(\Rightarrow\)d = 1
Vậy 2n + 1 và 5n + 2 là 2 số nguyên tố cùng nhau
Gọi ƯCLN(2n + 1 ; 5n + 2 ) = d
2n + 1 \(⋮\)d \(\Rightarrow\)10n + 4\(⋮\)d ( 1 )
5n + 2 \(⋮\)d \(\Rightarrow\)10n + 5 \(⋮\)d ( 2 )
Từ (1) và (2) \(\Rightarrow\)(10n + 5) - ( 10n +4 ) = 10n - 10n + 5 - 4 = 1 \(⋮\)d \(\Rightarrow\)d = 1
\(\Rightarrow\)2n + 1 và 5n + 2 là hai số nguyên tố cùng nhau.
a) Gọi d là UCLN của 3n+4 và 2n+3, suy ra:
3n+4 chia hết cho d ; 2n+3 chia hết cho d
+ Ta có : 2.(3n+4) chia hết cho d ( mình kí hiệu là dấu : nha )
=> 6n+8 : d (1)
Lại có : 3.(2n+3) :d
=> 6n+9 : d (2)
+ Từ 1 và 2 => 6n+9 - 6n - 8 :d
=> 1 : d
=> 3n+4 và 2n+3 nguyên tố cùng nhau
Phần b tương tự, kk cho mìnhh nha
Gọi \(d=ƯCLN\left(4n+1;5n+1\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}4n+1⋮d\\5n+1⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}20n+5⋮d\\20n+4⋮d\end{matrix}\right.\)
\(\Leftrightarrow1⋮d\)
\(\Leftrightarrow d=1\)
Vậy: 4n+1 và 5n+1 là hai số nguyên tố cùng nhau
Đặt UCLN(5n+7;3n+4)=d
=>\(\left\{{}\begin{matrix}5n+7⋮d\\3n+4⋮d\end{matrix}\right.\)
<=>\(\left\{{}\begin{matrix}3\left(5n+7\right)⋮d\\5\left(3n+4\right)⋮d\end{matrix}\right.\)
<=>\(\left\{{}\begin{matrix}15n+21⋮d\\15n+20⋮d\end{matrix}\right.\)
=>(15n + 21) - (15n + 20) ⋮ d
<=> 1 ⋮ d
=> d ϵ Ư(1) = 1
=> 5n+7 và 3n+4 nguyên tố cùng nhau
\(\Leftrightarrow\left\{{}\begin{matrix}15n+25⋮d\\15n+24⋮d\end{matrix}\right.\Leftrightarrow d=1\)
Gọi UCLN của hai số đó là d , ta có:
4n + 3 chia hết cho d => 20n + 15 chia hết cho d
5n +1 chia hết cho d => 20n + 4 chia hết cho d
=> 20 n + 15 - 20n + 4 chia hết cho d
Mà 20n + 15 - 20n +4 = 11 là Snt => .................