K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 9 2021

\(a,\left(a^2-b^2\right)^2+4\left(ab\right)^2=a^4-2a^2b^2+b^4+4a^2b^2\\ =a^4+2a^2b^2+b^4=\left(a^2+b^2\right)^2\\ b,\left(a^2+b^2\right)\left(x^2+y^2\right)\\ =a^2x^2+a^2y^2+b^2x^2+b^2y^2\\ \left(ax+by\right)^2=a^2x^2+2axby+b^2y^2\\ \Rightarrow\left(a^2+b^2\right)\left(x^2+y^2\right)\ne\left(ax+by\right)^2\)

Hoặc áp dụng BĐT Bunhiacopski:

\(\left(a^2+b^2\right)\left(x^2+y^2\right)\ge\left(ax+by\right)^2\)

Dấu \("="\Leftrightarrow\dfrac{a}{x}=\dfrac{b}{y}\)

24 tháng 8 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

31 tháng 5 2018

1. \(\left(a+b\right)^2=\left(a-b\right)^2+4ab\)

\(VP=a^2-2ab+b^2+4ab=a^2+2ab+b^2=\left(a+b\right)^2\)

\(\Rightarrow VT=VP\)

2. \(a^4-b^4=\left(a-b\right)\left(a+b\right)\left(a^2+b^2\right)\)

\(VP=\left(a-b\right)\left(a+b\right)\left(a^2+b^2\right)=\left(a^2-b^2\right)\left(a^2+b^2\right)=a^4+a^2b^2-b^2a^2-b^4=a^4-b^4\)

\(\Rightarrow VT=VP\)

3. \(\left(a^2+b^2\right)\left(x^2+y^2\right)=\left(ax-by\right)^2+\left(bx+ay\right)^2\)

\(VT=\left(a^2+b^2\right)\left(x^2+y^2\right)=a^2x^2+a^2y^2+b^2x^2+b^2y^2\)

\(VP=\left(ax-by\right)^2+\left(bx+ay\right)^2=a^2x^2-2axby+b^2y^2+b^2x^2+2bxay+a^2y^2=a^2x^2+a^2y^2+b^2x^2+b^2y^2\)

\(\Rightarrow VT=VP\)

31 tháng 3 2018

Nó là bđt bunyakovsky luôn rồi mà bạn,lên google sẽ có cách chứng minh

31 tháng 3 2018

Mk lên tra được câu a thôi

Bn giúp mk câu b đi

29 tháng 5 2019

nhân ra xong chuyển vế mà làm

29 tháng 5 2019

\(\left(a^2+b^2\right)\left(x^2+y^2\right)\ge\left(\text{ax}+by\right)^2\)

\(\Leftrightarrow a^2x^2+a^2y^2+b^2x^2+b^2y^2\ge a^2x^2+2abxy+b^2y^2\)

\(\Leftrightarrow\left(ay-bx\right)^2\ge0\), luôn đúng 

AH
Akai Haruma
Giáo viên
14 tháng 7 2019

Lời giải:

Thực hiện khai triển ta có:

\((x+y+z)(a+b+c)=ax+by+xz+x(b+c)+y(a+c)+z(a+b)\)

\(=ax+by+cz+(a^2-bc)(b+c)+(b^2-ac)(a+c)+(c^2-ab)(a+b)\)

\(=ax+by+cz+(a^2b+a^2c+b^2a+b^2c+c^2a+c^2b)-(b^2c+bc^2+a^2c+ac^2+a^2b+ab^2)\)

\(=ax+by+cz+(a^2b-a^2b)+(ab^2-ab^2)+(b^2c-b^2c)+(bc^2-bc^2)+(ac^2-ac^2)+(a^2c-a^2c)\)

\(=ax+by+cz\)

Ta có đpcm.

2 tháng 4 2018

Sửa đề:

\(\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)\ge\left(ax+by+cz\right)^2\)

Xét hiệu:

\(\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)-\left(ax+by+cz\right)^2\)

\(=a^2x^2+a^2y^2+a^2z^2+b^2x^2+b^2y^2+b^2z^2+c^2x^2+c^2y^2+c^2z^2-a^2x^2-b^2y^2-c^2z^2-2axby-2axcz-2bycz\)

\(=a^2y^2+a^2z^2+b^2z^2+b^2x^2+c^2y^2+c^2x^2-2axby-2bycz-2axcz\)

\(=\left(a^2y^2-2axby+b^2x^2\right)+\left(a^2z^2-2axcz+c^2x^2\right)+\left(b^2z^2-2bycz+c^2y^2\right)\)

\(=\left(ay-bx\right)^2+\left(az-cx\right)^2+\left(bz-cy\right)^2\ge0\)

=> BĐT luôn đúng

2 tháng 4 2018

Cái này là bu cmnr ;v