K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2023

ko biết

 

26 tháng 7 2023

B = \(x^2\) - 2\(xy\) + 2y\(^2\) + 2\(x\) - 10y + 17

B = (\(x^2\) - 2\(xy\) + y2) + 2(\(x-y\)) + 1 + (y2 - 8y + 16)

B = (\(x-y\))2 + 2(\(x-y\)) + 1 + (y - 4)2

B = (\(x-y\) + 1)2 + (y - 4)2

(\(x-y+1\))2 ≥ 0 ∀ \(x;y\); (y - 4)2 ≥ 0 

B ≥ 0

Kết luận biểu thức không âm. Chứ không phải là biểu thức luôn dương em nhé. Vì dương thì biểu thức phải > 0 ∀ \(x;y\). Mà số 0 không phải là số dương. 

 

26 tháng 7 2023

Giải giúp mik với mik cần gấp

23 tháng 10 2021

\(P=\left(x+2y\right)^2-2\left(x+2y\right)\left(y-1\right)+\left(y-1\right)^2\\ P=\left(x+2y-y+1\right)^2=\left(x+y+1\right)^2\\ Q.sai.đề\\ M=\left(x+y\right)^3-3xy\left(x+y\right)+3xy\\ M=1^3-3xy\left(x+y-1\right)=1-3xy\left(1-1\right)=1-0=1\\ x+y=2\Leftrightarrow\left(x+y\right)^2=4\\ \Leftrightarrow x^2+y^2+2xy=4\\ \Leftrightarrow2xy=4-10=-6\\ \Leftrightarrow xy=-3\\ N=x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\\ N=2\left(10+3\right)=2\cdot13=26\)

25 tháng 8 2021

a) \(A=y\left(x^2-y^2\right)\left(x^2+y^2\right)-y\left(x^4-y^4\right)=y\left(x^4-y^4\right)-y\left(x^4-y^4\right)=0\)

b) \(B=\left(x-1\right)^3-\left(x-1\right)\left(x^2+x+1\right)-3\left(1-x\right)x=x^3-3x^2+3x-1-x^3-x^2-x+x^2+x+1-3x+3x^2=0\)

a: Ta có: \(A=y\left(x^2-y^2\right)\left(x^2+y^2\right)-y\left(x^4-y^4\right)\)

\(=y\left(x^4-y^4\right)-y\left(x^4-y^4\right)\)

=0

b: Ta có: \(B=\left(x-1\right)^3-\left(x-1\right)\left(x^2+x+1\right)-3x\left(1-x\right)\)

\(=x^3-3x^2+3x-1-x^3+1-3x+3x^2\)

=0

15 tháng 7 2021

B1

a, \(=>A=\left(x+y+x-y\right)\left(x+y-x+y\right)=2x.2y=4xy\)

b, \(=>B=\left[\left(x+y\right)-\left(x-y\right)\right]^2=\left[x+y-x+y\right]^2=\left[2y\right]^2=4y^2\)

c,\(\left(x^2+x+1\right)\left(x^2-x+1\right)\left(x^2-1\right)\)

\(=\)\(\left(x+1\right)\left(x^2-x+1\right)\left(x-1\right)\left(x^2+x+1\right)=\left(x^3+1^3\right)\left(x^3-1^3\right)=x^6-1\)

d, \(\left(a+b-c\right)^2+\left(a-b+c\right)^2-2\left(b-c\right)^2\)

\(=\left(a+b-c\right)^2-\left(b-c\right)^2+\left(a-b+c\right)^2-\left(b-c\right)^2\)

\(=\left(a+b-c+b-c\right)\left(a+b-c-b+c\right)\)

\(+\left(a-b+c+b-c\right)\left(a-b+c-b+c\right)\)

\(=a\left(a+2b-2c\right)+a\left(a-2b\right)\)

\(=a\left(a+2b-2c+a-2b\right)=a\left(2a-2c\right)=2a^2-2ac\)

B2:

\(\)\(x+y=3=>\left(x+y\right)^2=9=>x^2+2xy+y^2=9\)

\(=>xy=\dfrac{9-\left(x^2+y^2\right)}{2}=\dfrac{9-\left(17\right)}{2}=-4\)

\(=>x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=3\left(17+4\right)=63\)

Bài 1: 

a) Ta có: \(\left(x+y\right)^2-\left(x-y\right)^2\)

\(=x^2+2xy+y^2-x^2+2xy+y^2\)

=4xy

b) Ta có: \(\left(x+y\right)^2-2\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\)

\(=\left(x+y-x+y\right)^2\)

\(=\left(2y\right)^2=4y^2\)

c) Ta có: \(\left(x^2+x+1\right)\left(x^2-x+1\right)\left(x^2-1\right)\)

\(=\left(x-1\right)\left(x^2+x+1\right)\left(x+1\right)\left(x^2-x+1\right)\)

\(=\left(x^3-1\right)\left(x^3+1\right)\)

\(=x^6-1\)

d) Ta có: \(\left(a+b-c\right)^2+\left(a+b+c\right)^2-2\left(b-c\right)^2\)

\(=\left(a+b-c\right)^2-\left(b-c\right)^2+\left(a+b+c\right)^2-\left(b-c\right)^2\)

\(=\left(a+b-c-b+c\right)\left(a+b-c+b-c\right)+\left(a+b+c-b+c\right)\left(a+b+c+b-c\right)\)

\(=a\cdot\left(a+2b-2c\right)+\left(a+2c\right)\left(a-2b\right)\)

\(=a^2+2ab-2ac+a^2-2ab+2ac-4bc\)

\(=2a^2-4bc\)