Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Đặt \(A=n^3+6n^2+8n\)
\(A=n\left(n^2+6n+8\right)\)
\(A=n\left(n^2+2n+4n+8\right)\)
\(A=n\left[n\left(n+2\right)+4\left(n+2\right)\right]\)
\(A=n\left(n+2\right)\left(n+4\right)⋮\forall n\) chẵn
b)Đặt \(B=n^4-10n^2+9\)
\(B=n^4-n^2-9n^2+9\)
\(B=n^2\left(n^2-1\right)-9\left(n^2-1\right)\)
\(B=\left(n-3\right)\left(n-1\right)\left(n+1\right)\left(n+3\right)⋮384\forall n\) lẻ
1)
a)251-1
=(23)17-1\(⋮\)23-1=7
Vậy 251-1\(⋮\)7
b)270+370
=(22)35+(32)35\(⋮\)22+32=13
Vậy 270+370\(⋮\)13
c)1719+1917
=(BS18-1)19+(BS18+1)17
=BS18-1+BS18+1
=BS18\(⋮\)18
d)3663-1\(⋮\)35\(⋮\)7
Vậy 3663-1\(⋮\)7
3663-1
=3663+1-2
=BS37-2\(⋮̸\)37
Vậy 3663-1\(⋮̸\)37
e)24n-1
=(24)n-1\(⋮\)24-1=15
Vậy 24n-1\(⋮\)15
\(a,n^3+6n^2+8n\)
\(=n\left(n^2+6n+8\right)\)
\(=n\left(n^2+4n+2n+8\right)\)
\(=n\left[\left(n^2+4n\right)+\left(2n+8\right)\right]\)
\(=n\left[n\left(n+4\right)+2\left(n+4\right)\right]\)
\(=n\left(n+2\right)\left(n+4\right)\)
Vì n chẵn ,đây là tích của ba số chẵn liên tiếp => chia hết cho 48
b, tương tự a
\(A=n^4+6n^3+11n^2+6n\)
\(=n\left(n^3+6n^2+11n+6\right)\)
\(=n\left(n^3+n^2+5n^2+5n+6n+6\right)\)
\(=n\left[n^2\left(n+1\right)+5n\left(n+1\right)+6\left(n+1\right)\right]\)
\(=n\left(n+1\right)\left(n^2+5n+6\right)\)
\(=n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)
Do đây là tích 4 số nguyên liên tiếp nên nó vừa chia hết cho \(2,3,4\Rightarrow A\) chia hết cho
phân tích n^2+4n+8=(n+1)(n+3)
vì là số tự nhiên lẻ nên đặt n=2k+1(k thuộc N)
=>n^2+4n+8=(n+1)(n+3)=(2k+2)(2k+4)
=4.(k+1)(k+2)
(k+1)(k+2) là tích 2 số tự nhiên liên tiếp chia hết cho 2
=>4.(k+1)(k+2)\(⋮\)8
Ta có:\(n^2+6n-7=\left(n+7\right)\left(n-1\right)\left\{@\right\}\)
mà n lẻ
=> n có dạng 2k+1
\(@\Leftrightarrow\left(2k+8\right).2k=4k\left(k+4\right)⋮4\left(ĐPCM\right)\)