Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi UCLN(2n + 3; 4n + 5) là d (d thuộc N*)
=> 2n + 3 chia hết cho d => 4n + 6 chia hết cho d => 4n + 5 + 1 chia hết cho d
và 4n + 5 chia hết cho d
=> 1 chia hết cho d
=> d = 1 (Vì d thuộc N*)
=> UWCLN(2n + 3; 4n + 5) = 1
=> 2n + 3/4n + 5 là phân số tối giản với mọi số tự nhiên n
Vậy,........
Đặt \(d=\left(2n+3,3n+5\right)\).
Ta có: \(\hept{\begin{cases}2n+3⋮d\\3n+5⋮d\end{cases}}\Rightarrow\hept{\begin{cases}3\left(2n+3\right)⋮d\\2\left(3n+5\right)⋮d\end{cases}}\Rightarrow2\left(3n+5\right)-3\left(2n+3\right)=1⋮d\).
Suy ra \(d=1\). Ta có đpcm.
Gọi (2n+1,2n+3) là d. ĐK : \(d\inℕ^∗\)
Ta có : (2n+1,2n+3)=d
\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\2n+3⋮d\end{cases}}\)
\(\Rightarrow\)(2n+3)-(2n+1)\(⋮\)d
\(\Rightarrow\)2\(⋮\)d
\(\Rightarrow d\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
Mà 2n+1 là số nguyên lẻ nên \(d=\pm1\)
\(\Rightarrow\left(2n+1,2n+3\right)=\pm1\)
\(\Rightarrow\)2n+1 và 2n+3 là 2 số nguyên tố cùng nhau
\(\Rightarrow\)Phân số \(A=\frac{2n+1}{2n+3}\)tối giản với mọi số tự nhiên n (đpcm)
Gọi d là ước chung của 2n+5 và 2n+3
=> 2n+5 chia hết cho d và 2n+3 chia hết cho d
=> (2n+5)-(2n+3)=2 chia hết cho d => d={1;2}
Do 2n+5 và 2n+3 lẻ => d lẻ => d=1
=> phân số trên tối giản với mọi n
a/
Gọi $d=ƯCLN(n+1, 2n+3)$
$\Rightarrow n+1\vdots d; 2n+3\vdots d$
$\Rightarrow 2n+3-2(n+1)\vdots d$
$\Rightarrow 1\vdots d$
$\Rightarrow d=1$
Vậy $\frac{n+1}{2n+3}$ là phân số tối giản với mọi số tự nhiên $n$
b/
Cho $a=2, b=2$ thì phân số đã cho bằng $\frac{24}{26}$ không là phân số tối giản bạn nhé.
Bạn xem lại đề.
Gọi ước chung lớn nhất của 2n + 1 và 4n + 3 là d
Ta có: \(\left\{{}\begin{matrix}2n+1⋮d\\4n+3⋮d\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}2\left(2n+1\right)⋮d\\4n+3⋮d\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}4n+2⋮d\\4n+3⋮d\end{matrix}\right.\)
Trừ vế cho vế ta có: 4n + 3 - ( 4n + 2) ⋮ d
⇒ 4n + 3 - 4n - 2 ⋮ d
⇒ 1 ⋮ d ⇒ d = 1
Vậy ước chung lớn nhất của 2n + 1 và 4n + 3 là 1 hay phân số:
\(\dfrac{2n+1}{4n+3}\) là phân số tối giản ( đpcm)
Câu 1:
gọi n-1/n-2 là M.
Để M là phân số tối giản thì ƯCLN (n - 1; n - 2) = 1 hay -1
Theo đề bài: M = n−1n−2n−1n−2 (n ∈∈Zℤ; n ≠2≠2)
Gọi d = ƯCLN (n - 1; n - 2)
=> n - 1 - (n - 2) ⋮⋮d *n - 1 - (n - 2) = n - 1 - n + 2 = n - n + 2 - 1 = 0 + 2 - 1 = 2 - 1 = 1
=> 1 ⋮⋮d
=> d ∈∈Ư (1)
Ư (1) = {1}
=> d = 1
Mà ngay từ lúc đầu d phải bằng 1 rồi.
Vậy nên với mọi n ∈∈Z và n ≠2≠2thì M là phân số tối giản.