K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 4 2020

Gọi d là UCLN của \(3n^2+5n+1\left(and\right)8n^2+7n+1\)

\(\Rightarrow\hept{\begin{cases}3n^2+5n+1⋮d\\8n^2+7n+1⋮d\end{cases}=>8\left(3n^2+5n+1\right)-3\left(8n^2+7n+1\right)⋮d}\)

\(\Rightarrow24n^2+40n+8-24n^2-21n-3⋮d\)

\(=>19n-5⋮d\)

do 19 zà 5 là số nguyên tố =>không chia hết cho d

=>p.số tối giản 

9 tháng 1

tai sao 19 va 5 la so nguyen to lai ko chia het cho d ?

24 tháng 5 2018

Hướng dẫn giải:

Gọi d là ƯCLN của 7n - 5 và 3n - 2

⇒ (7n - 5)⋮ d và (3n - 2)⋮ d

⇒ [3(7n - 5) - 7(3n - 2)] = -1⋮ d

⇒ d = 1 hoặc d = -1 

Vậy phân thức đã cho tối giản với ∀n ∈ N

2 tháng 12 2017

Gọi d là ước chung của 3n+1 và 5n+2

Ta có:

3n+1 ⋮ d ⇒ 15n + 5 ⋮ d (1)

5n+2 ⋮ d ⇒ 15n + 6 ⋮ d (2)

Từ (1) và (2) suy ra:

(15n + 6) - (15n + 5) ⋮ d

⇒ 15n + 6 - 15n - 5 ⋮ d

⇒ 1 ⋮ d

⇒ d ∈ Ư(1)

mà Ư(1)={-1;1}

⇒d ∈ {-1;1}

⇒ƯC(3n+1, 5n +2)∈{-1;1}

Vậy \(\dfrac{3n+1}{5n+2}\) là phân số tối giản.

3 tháng 8 2016

Bài 3:

\(\frac{3n+1}{5n+2}\)

Ta có : (3n +1) * 5 =15n + 5

            (5n+2) *3 = 15n + 6

Mà :  15n + 6 - (15n + 5 ) =1 

       =>\(\frac{3n+1}{5n+2}\) tối giản ( ĐPCM)

29 tháng 1 2015

Gọi UCLN của chúng là d rồi khử n là tìm được d=1 or d=-1 

8 tháng 2 2015

a/rút gọn n ta còn 3+1/5+10=4/15(tối giản suy ra đpcm)

b/tương tự như câu a nhưng thay số 

c/rút gọn n còn 3+2/4+3^2+1=5/14( tối giản suy ra đpcm)

d/rút gọn n ta còn 2+1/2^2-1=3/3=1/1(tối giản suy ra đpcm)

Tèn ten xong nhưng ko bik đúng hay sai nha!!!!!!!!!!!!!!!!!!!!!!!!!!!

20 tháng 11 2018

lp 6 bt lm r

gọi UCLN(3n+1;5n+2)=d

ta có:

5n+2-(3n+1)=2n+2 chia hết cho d

5n+2-(2n+2)=3n chia hết cho d 

3n+1-3n=1 chia hết cho d

=>d=1

=>3n+1 và 5n+2 là 2 số ng t cùng nhau

=>phân số trên là ph/số tối giản

20 tháng 11 2018

Gọi \(ƯC\left(3n+1;5n+2\right)=d\left(d\in N\right)\)

\(\Rightarrow3n+1⋮d,5n+2⋮d\)

\(\Rightarrow3\left(5n+2\right)-5\left(3n+1\right)⋮d\)

\(\Rightarrow15n+6-15n-5⋮d\Rightarrow1⋮d\Rightarrow d=1\)

Ước chung của tử và mẫu là 1 nên phân số \(\frac{3n+1}{5n+2}\) tối giản

21 tháng 11 2016

b/ Đề sửa lại là: \(\frac{8n+15}{12n+22}\)

Gọi gọi d là  UCLN[(8n + 15);(12n + 22)]

Ta có 3(8n + 15) = 24n + 45 chia hết cho d

2(12n + 22) = 24n + 44 chia hết cho d

=> 24n + 45 - 24n - 44 = 1 chia hết cho d

=> d = 1

Vậy phân thức ban đầu là tối giản

21 tháng 11 2016

Mình ko biết nha 

Nhớ k cho mình nhé

Chúc các bạn học giỏi

12 tháng 11 2021

Gọi d là \(UCLN\left(3n+1;5n+2\right)\)

\(\Rightarrow\left\{{}\begin{matrix}\left(3n+1\right)⋮d\\\left(5n+2\right)⋮d\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}15n+5⋮d\\15n+6⋮d\end{matrix}\right.\)

\(\Rightarrow\left(15n+6\right)-\left(15n+5\right)⋮d\Rightarrow1⋮d\left(đpcm\right)\)

10 tháng 2 2021

Gọi \(d=\left(n^3+2n;n^4+3n^2+1\right)\)

\(\Rightarrow\hept{\begin{cases}\left(n^3+2n\right)⋮d\\\left(n^4+3n^2+1\right)⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}n\left(n^3+2n\right)=\left(n^4+2n^2\right)⋮d\\\left(n^4+3n^2+1\right)⋮d\end{cases}}\)

\(\Rightarrow\left(n^4+3n^2+1\right)-\left(n^4+2n^2\right)⋮d\)

\(\Leftrightarrow n^2+1⋮d\Leftrightarrow\left(n^2+1\right)^2⋮d\)

\(\Rightarrow\left(n^2+1\right)^2-\left(n^4+2n^2\right)⋮d\Leftrightarrow1⋮d\Rightarrow d=1\)

=> P/s tối giản

Gọi \(d=ƯCLN\left(n^3+2n;n^4+3n^2+1\right);\left(d>0\right)\)

\(\Rightarrow\hept{\begin{cases}n^3+2n⋮d\left(1\right)\\n^4+3n^2+1⋮d\end{cases}}\)

Từ \(\left(1\right)\)\(\Rightarrow n\left(n^3+2n\right)⋮d\)

\(\Rightarrow n^4+2n^2⋮d\)

\(\Rightarrow\left(n^4+3n^2+1\right)-\left(n^4+2n^2\right)⋮d\)

\(\Rightarrow n^2+1⋮d\)

\(\Rightarrow\left(n^2+1\right)^2⋮d\)

\(\Rightarrow n^4+2n^2+1⋮d\)

\(\Rightarrow1⋮d\)(do \(n^4+2n^2⋮d\))

Vì \(d>0\)\(\Rightarrow d=1\)

\(\Rightarrow\left(n^3+2n;n^4+3n^2+1\right)=1\)

\(\Rightarrow\frac{n^3+2n}{n^4+3n^2+1}\)là phân số tối tối giản với mọi n nguyên