Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hiểu như này:
\(\dfrac{a}{1+a}+\dfrac{b}{1+b}+\dfrac{b}{1+b}=3-\left(\dfrac{1}{1+a}+\dfrac{1}{1+b}+\dfrac{1}{1+b}\right)\le3-\dfrac{9}{1+a+1+b+1+b}=\dfrac{3\left(a+2b\right)}{3+a+2b}\)
11 c)
\(a^2+2\ge2\sqrt{a^2+1}\Leftrightarrow a^2+1-2\sqrt{a^2+1}+1\ge0\Leftrightarrow\left(\sqrt{a^2+1}-1\right)^2\ge0\) (luôn đúng)
12 a) Có a+b+c=1\(\Rightarrow\) (1-a)(1-b)(1-c)= (b+c)(a+c)(a+b) (*)
áp dụng BĐT cô-si: \(\left(b+c\right)\left(a+c\right)\left(a+b\right)\ge2\sqrt{bc}2\sqrt{ac}2\sqrt{ab}=8\sqrt{\left(abc\right)2}=8abc\) ( luôn đúng với mọi a,b,c ko âm )
b) áp dụng BĐT cô-si: \(c\left(a+b\right)\le\dfrac{\left(a+b+c\right)^2}{4}=\dfrac{1}{4}\)
Tương tự: \(a\left(b+c\right)\le\dfrac{1}{4};b\left(c+a\right)\le\dfrac{1}{4}\)
\(\Rightarrow abc\left(a+b\right)\left(b+c\right)\left(c+a\right)\le\dfrac{1}{4}\dfrac{1}{4}\dfrac{1}{4}=\dfrac{1}{64}\)
Gọi E là giao điểm của AC và BD
Hình vẽ:
\(\overrightarrow{MN}=\overrightarrow{DN}-\overrightarrow{DM}=\dfrac{2}{3}\overrightarrow{DB}+\dfrac{3}{4}\overrightarrow{AD}\)
\(=\dfrac{4}{3}\overrightarrow{EB}+\dfrac{3}{4}\overrightarrow{BC}\)
\(=\dfrac{4}{3}\left(\overrightarrow{AB}-\overrightarrow{AE}\right)+\dfrac{3}{4}\left(\overrightarrow{AC}-\overrightarrow{AB}\right)\)
\(=\dfrac{4}{3}\left(\overrightarrow{AB}-\dfrac{1}{2}\overrightarrow{AC}\right)+\dfrac{3}{4}\left(\overrightarrow{AC}-\overrightarrow{AB}\right)=\dfrac{7}{12}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AC}\)
\(\overrightarrow{MC}=\overrightarrow{MD}+\overrightarrow{DC}=\dfrac{3}{4}\overrightarrow{AD}+\overrightarrow{AB}\)
\(=\dfrac{3}{4}\overrightarrow{BC}+\overrightarrow{AB}\)
\(=\dfrac{3}{4}\left(\overrightarrow{AC}-\overrightarrow{AB}\right)+\overrightarrow{AB}\)
\(=\dfrac{1}{4}\overrightarrow{AB}+\dfrac{3}{4}\overrightarrow{AC}\)
\(\overrightarrow{MB}=\overrightarrow{AB}-\overrightarrow{AM}=\overrightarrow{AB}-\dfrac{1}{4}\overrightarrow{AD}\)
\(=\overrightarrow{AB}-\dfrac{1}{4}\overrightarrow{BC}\)
\(=\overrightarrow{AB}-\dfrac{1}{4}\left(\overrightarrow{AC}-\overrightarrow{AB}\right)\)
\(=\dfrac{5}{4}\overrightarrow{AB}-\dfrac{1}{4}\overrightarrow{AC}\)
a: Tọa độ điểm D là:
\(\left\{{}\begin{matrix}x_D=\dfrac{1-1}{2}=0\\y_D=\dfrac{-2+\left(-2\right)}{2}=-2\end{matrix}\right.\)
Câu 1: D
Câu 2: Những mệnh đề sai là: 2,3,4,5,7,8
=>Chọn B
Câu 3: C
Câu 4: A
Câu 5: D
Câu 6: D
Câu 7: D
Câu 8: C
Câu 9: D
Câu 10: B
Câu 11: D
Câu 12: D
Câu 13: C
Câu 14: B
Câu 15: C
Câu 16: C
Câu 18: C
Câu 17: A