K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
24 tháng 4 2021

TH1:  \(m=-1\) thỏa mãn (dễ dàng kiểm tra các giá trị \(f\left(-1\right)>0\) ; \(f\left(0\right)< 0\) ; \(f\left(3\right)>0\) nên pt có ít nhất 2 nghiệm thuộc (-1;0) và (0;3)

TH2: \(m>-1\):

\(\lim\limits_{x\rightarrow+\infty}f\left(x\right)=\lim\limits_{x\rightarrow+\infty}x^4\left[m\left(1-\dfrac{2}{x}\right)^2\left(1+\dfrac{9}{x}\right)+1-\dfrac{32}{x^4}\right]=+\infty.\left(m+1\right)=+\infty>0\)

\(\Rightarrow\) Luôn tồn tại 1 giá trị \(x=a\) đủ lớn sao cho \(f\left(a\right)>0\)

\(f\left(0\right)=-32< 0\Rightarrow f\left(a\right).f\left(0\right)< 0\)

\(\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm dương

\(f\left(-9\right)=9^4-32>0\Rightarrow f\left(-9\right).f\left(0\right)< 0\)

\(\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm âm thuộc \(\left(-9;0\right)\)

\(\Rightarrow f\left(x\right)\) luôn có ít nhất 2 nghiệm

TH3: \(m< -1\) tương tự ta có: \(\lim\limits_{x\rightarrow+\infty}f\left(x\right)=\lim\limits_{x\rightarrow-\infty}=+\infty.\left(m+1\right)=-\infty\)

\(\Rightarrow\) Luôn tồn tại 1 giá trị \(x=a>0\) đủ lớn và \(x=b< 0\) đủ nhỏ sao cho \(\left\{{}\begin{matrix}f\left(a\right)< 0\\f\left(b\right)< 0\end{matrix}\right.\)

Lại có \(f\left(-9\right)=9^4-32>0\) \(\Rightarrow\left\{{}\begin{matrix}f\left(-9\right).f\left(a\right)< 0\\f\left(-9\right).f\left(b\right)< 0\end{matrix}\right.\)

\(\Rightarrow\) Pt luôn có ít nhất 2 nghiệm thuộc  \(\left(-\infty;-9\right)\) và \(\left(-9;+\infty\right)\)

Vậy pt luôn có ít nhất 2 nghiệm với mọi m

28 tháng 2 2022

same e :v

NV
1 tháng 3 2022

Đặt \(f\left(x\right)=x^4-\left(3m-2\right)x^3+mx-1\)

Hiển nhiên \(f\left(x\right)\) liên tục và xác định trên R

\(f\left(0\right)=-1< 0\)

\(\lim\limits_{x\rightarrow+\infty}f\left(x\right)=\lim\limits_{x\rightarrow+\infty}\left(x^4-\left(3m-2\right)x^3+mx+1\right)=+\infty\) dương

\(\Rightarrow\) Luôn tồn tại 1 số thực \(a>0\) đủ lớn sao cho \(f\left(a\right)>0\)

\(\Rightarrow f\left(0\right).f\left(a\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(0;a\right)\) hay \(\left(0;+\infty\right)\)

\(\lim\limits_{x\rightarrow-\infty}\left(x^4-\left(3m-2\right)x^3+mx-1\right)=+\infty\) dương

\(\Rightarrow\) Luôn tồn tại 1 số thực \(b< 0\) sao cho \(f\left(b\right)>0\)

\(\Rightarrow f\left(0\right),f\left(b\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(-\infty;0\right)\)

Vậy phương trình luôn có ít nhất 2 nghiệm với mọi m

9 tháng 5 2022

Đặt \(f\left(x\right)=\left(m^2+1\right)x^5-2m^2x^3-4x+m^2+1\) liên tục trên R 

=> f(x) liên tục trên \(\left[-2;0\right];\left[0;1\right];\left[1;2\right]\)

Ta có : \(f\left(-2\right)=-15m^2-23< 0;f\left(0\right)=m^2+1>0;f\left(1\right)=-2< 0\)

\(f\left(2\right)=17m^2+25>0\)  .

Suy ra : \(f\left(-2\right).f\left(0\right)< 0;f\left(0\right).f\left(1\right)< 0;f\left(1\right).f\left(2\right)< 0\)

Chứng tỏ : p/t đã cho luôn có ít nhất 1 no \(\in\left(-2;0\right)\)  ; 1 no \(\in\left(0;1\right)\) ; 1 no \(\in\left(1;2\right)\)

=> P/t luôn có ít nhất 3 no thực \(\forall m\left(đpcm\right)\)

10 tháng 5 2022

Cám ơn thầy nhiều lắm ạ

 

24 tháng 12 2023

\(\lim\limits_{x\rightarrow1^-}\dfrac{x^3-1}{x-1}=\lim\limits_{x\rightarrow1^-}\dfrac{\left(x-1\right)\left(x^2+x+1\right)}{x-1}=\lim\limits_{x\rightarrow1^-}x^2+x+1=1^2+1+1=3\)

\(\lim\limits_{x\rightarrow1^+}mx+2=\lim\limits_{x\rightarrow1^+}m+2\)

Để tồn tại \(\lim\limits_{x\rightarrow1}f\left(x\right)\) thì \(\lim\limits_{x\rightarrow1^+}f\left(x\right)=\lim\limits_{x\rightarrow1^-}\)

\(\Leftrightarrow m+2=3\\ \Leftrightarrow m=1\)

Vậy ...

NV
18 tháng 3 2021

Đặt \(f\left(x\right)=\left(5-3m\right)x^7+m^2x^4-2\Rightarrow f\left(x\right)\) liên tục trên R

\(f\left(0\right)=-2< 0\)

\(f\left(1\right)=m^2-3m+3=\left(m-\dfrac{3}{2}\right)^2+\dfrac{3}{4}>0\) ;\(\forall m\)

\(\Rightarrow f\left(0\right).f\left(1\right)< 0\) ;\(\forall m\)

\(\Rightarrow f\left(x\right)=0\) luôn có ít nhất 1 nghiệm thuộc \(\left(0;1\right)\) (đpcm)