K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 10 2016

  101983+125

101983=101973.1010

=Vì 1010=10000000000/45 nên 101973 .1010/ hay 101983/45

125/45

=>101983+125/45

(dấu"/" của mik nghĩa là chia hết)

mk nghĩ bn vào chtt đi chứ giải ra dài quá

25 tháng 10 2023

a)

\(3^{21}-3^{18}\\ =3^{17}.\left(3^4-3\right)\\ =3^{17}.\left(81-3\right)\\ =3^{17}.78\)

Vì \(3^{17}.78⋮78\) nên \(3^{21}-3^{18}⋮78\) (đpcm)

Vậy...

b)
\(81^7-27^9-9^{13}\\ =\left(3^4\right)^7-\left(3^3\right)^9-\left(3^2\right)^{13}\\ =3^{28}-3^{27}-3^{26}\\ =3^{24}.\left(3^4-3^3-3^2\right)\\ =3^{24}.\left(81-27-9\right)\\ =3^{24}.45\)

Vì \(3^{24}.45⋮45\) nên \(81^7-27^9-9^{13}⋮45\) (đpcm)

Vậy...

25 tháng 12 2017

Đặt \(A=36^{36}-9^{10}\)

\(\left\{{}\begin{matrix}36^{36}⋮9\\9^{10}⋮9\end{matrix}\right.\Rightarrow A=36^{36}-9^{10}⋮9\)

\(36\equiv1\left(mod5\right)\\ \Rightarrow36^{36}\equiv1\left(mod5\right)\\ 9\equiv-1\left(mod5\right)\\ \Rightarrow9^{10}\equiv1\left(mod5\right)\\ \Rightarrow A=36^{36}-9^{10}\equiv0\left(mod5\right)\\ \Rightarrow A⋮5\)

(5;9)=1 => A chia hết 45

20 tháng 8 2018

Chúng minh rằng : 

a) ( 5n )^100 chia hết cho 125 

( 5n )^100 = ( 5n )^2 .50

= ( 5n . 5 . 5)^50

= ( 5 . 5 . 5 . n )^50 

= ( 125n )^50 chia hết cho 125

b) 8^8 + 2^20 chia hết cho 17

8^8 + 2^20

= ( 2^3 )^8 + 2^20

= 2^24 + 2^20 

= 2^20 . 2^4 + 2^20 . 1

= 2^20 . 16 + 2^20 . 1

= 2^20 . ( 16 + 1 )

= 2^20 . 17 chia hết cho 17 

16 tháng 7 2016

Ta có:

\(3^{2016}+3^{2015}-3^{2014}=3^{2014}\left(3^2+3-1\right)=3^{2014}.11\) chia hết cho 11

Vậy 32016+32015-32014 chia hết cho 11 (đpcm)

--------------------------

Ta có:

  • \(36^{36}-9^{10}=4^{36}.9^{36}-9^{10}=9^{10}\left(4^{36}.9^{26}-1\right)=\) chia hết cho 9 (1)
  • \(36^{36}-9^{10}=\left(...6\right)-\left(...1\right)=\left(...5\right)\) chia hết cho 5 (2) 

Vì 3636 có tận cùng là 6, 910 có tận cùng là 1 => 3636-910 có tận cùng là 5 [ phần này mình chỉ nói thêm thôi nhé ]

Từ (1),(2) và (5;9)=1 =>3636-910 chia hết cho 5.9=45 (đpcm)

16 tháng 7 2016

9. \(3^{2016}+3^{2015}-3^{2014}=3^{2014}\left(3^2+3-1\right)\)

                                      \(=3^{2014}.11⋮11\)

Vậy \(3^{2016}+3^{2015}-3^{2014}\) chia hết cho 11

16 tháng 7 2016

Mình chỉ làm được cái thứ 2 thôi..thông cảm nhé:

 36^36 - 9^10 chia hết cho 9 (1) (vì 36^36 và 9^10 đều chia hết cho 9) 
36^36 tận cùng là 6 (số tận cùng bằng 6 nâng lên luỹ thừa n (n nguyên dương) thì kết quả cũng tận cùng là 6) 
9^10 tận cùng là 1 (9 luỹ thừa m với m chẵn luôn tận cùng là 1) 
---> 36^36 - 9^10 tận cùng là 5 và do đó nó chia hết cho 5 (2) 
Vì 5 và 9 là 2 số nguyên tố cùng nhau nên từ (1),(2) ---> 36^36 - 9^10 chia hết cho 45.

16 tháng 7 2016

               9)  Ta có :

                  32016 + 32015 - 32014 = 32014 . (32 + 3 - 1) = 32014 . (9 + 3 - 1) = 32014 . 11 chia hết cho 11 (ĐPCM)

             Tớ chỉ làm đc phần 9 thui ^_^