K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 11 2018

Ta có: 10n + 18n - 1 = (10n - 1) + 18n = 99...9 + 18n (số 99...9 có n chữ số 9)
= 9(11...1 + 2n) (số 11...1 có n chữ số 1) = 9.A
Xét biểu thức trong ngoặc A = 11...1 + 2n = 11...1 - n + 3n (số 11...1 có n chữ số 1).
Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3. Số 11...1 (n chữ số 1) có tổng các chữ số là 1 + 1 + ... + 1 = n (vì có n chữ số 1).
=> 11...1 (n chữ số 1) và n có cùng số dư trong phép chia cho 3 => 11...1 (n chữ số 1) - n chia hết cho 3 => A chia hết cho 3 => 9.A chia hết cho 27 hay 10n + 18n - 1 chia hết cho 27 (đpcm)

1 tháng 12 2017

\(n\left(n+2\right)\left(25n^2-1\right)=n\left(n+2\right)24n^2+n\left(n+2\right)\left(n^2-1\right)\)

\(=24n^3\left(n+2\right)+\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)

thành phần 24n3(n+2) chia hết cho 24.

thành phần sau là tích của 4 số tn liên tiếp nên trong 4 số thì phải có 1 số chia hết cho 3, có 2 số chẵn trong đó 1 số chẵn chia hết cho 4 (vì trong 4 số tn liên tiếp thì có 1 số chia hết cho 4) và một số chẵn còn lại chia hết cho 2 vậy tích 4 số chia hết cho 3x4x2=24.

=>(đpcm)

30 tháng 11 2017

   \(n.\left(n+2\right)\left(25^2-1\right)\)

\(=n.\left(n+2\right).\left(25-1\right)\left(25+1\right)\)

\(=n.\left(n+2\right).26.24\)

\(\Rightarrow n.\left(n+2\right).26.24⋮24\)\(\forall n\in N\)

30 tháng 11 2017

mình ghi nhầm đúng hơn là : \(n\left(n+2\right)\left(25n^2-1\right)\) giải jum mình nhé

16 tháng 11 2022

 

loading...

Vì đây là 7 số nguyên liên tiếp

nên A chia hết cho 7!

=>A chia hết cho 5040

=>A chia hết cho 210

AH
Akai Haruma
Giáo viên
26 tháng 8 2021

Lời giải:
Xét:

$M=1+10+....+10^n$

$10M=10+10^2+....+10^{n+1}$
$10M-M=10^{n+1}-1$

$M=\frac{10^{n+1}-1}{9}$

$A=M.(10^{n+1}+5)+1=\frac{(10^{n+1}-1)(10^{n+1}+5)}{9}+1$

$=\frac{10^{2n+2}+4.10^{n+1}-5+9}{9}$

$=\frac{10^{2n+2}+4.10^{n+1}+4}{9}$

$=\frac{(10^{n+1}+2)^2}{9}$

$=\left(\frac{10^{n+1}+2}{3}\right)^2$
Ta thấy: $10^{n+1}+2\equiv 1^{n+1}+2=3\equiv 0\pmod 3$

Do đó: $\frac{10^{n+1}+2}{3}\in\mathbb{N}$

Suy ra $A$ là scp.

24 tháng 6 2017

Đề sai rồi b

26 tháng 6 2017

Không sai đâu bạn

\(\left(5n-2\right)^2-\left(2n-5\right)^2=25n^2-20n+4-\left(4n^2-20n+25\right)=25n^2-20n+4-4n^2+20n-25=21n^2-21=21.\left(n^2-1\right)⋮21\left(đpcm\right)\)

Đề bài phải là chia hết cho 21 chứ !!