Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi d là ƯC của 4n + 7 và 6n + 1
Khi đó : 4n + 7 chia hết cho d và 6n + 1 chia hết cho d
<=> 12n + 21 chia hết cho d và 12n + 2 chia hết cho d
=> (12n + 21) - ( 12n + 2) chia hết cho d = > 19 chia hết cho d
Vì 19 là số nguyên tố => d = 1
Vậy \(\frac{4n+7}{6n+1}\) Là p/s tối giản
Nếu n = 3 thì 4n+7/6n+1=1 đâu phải là phân số tối giản
Ta có :
\(100-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)
\(=100-\left[1+\left(1-\frac{1}{2}\right)+\left(1-\frac{2}{3}\right)+...+\left(1-\frac{99}{100}\right)\right]\)
\(=100-\left[\left(1+1+1+...+1\right)-\left(\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\right)\right]\)
\(=100-\left[100-\left(\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\right)\right]\)
\(=100-100+\left(\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\right)\)
\(=\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\)
ta có 100-(1+1/2+1/3+.....+1/100)
=(1+1+1......1)(99 số 1)-(1+1/2+1/3+......+1/100)
=(1-1)+(1-1/2)+(1-1/3)+.......+(1-1/100)
=1/2+2/3+3/4+.....+99/100
Đặt A=1/3+2/3^2+...+100/3^100
=>3A=1+2/3+...+100/2^99
=>3A-A=1+(2/3-1/3)+(3/32-2/32)+...(100/299-99/2^99)-100/3100
=>2A=1+1/3+1/3+1/32+...+1/399-100/3100
Ta lại đặt tiếp B=1/3+...+1/399
tiếp tục làm 3B=1+...+1/398
=>3B-B=1+...+1/398-1/3+...+1/399=1-1/3^99
=>B=(1-1/3^99)/2 (đến đây viết mũ là ^ vì lười)
đến đây ta có 2A=1+(1-1/3^99)/2 -100/3^100
=(3^100-100)/3^100 +(1-1/3^99)/2
quy đồng lên nó thành
2A=2x3^100-200/3^100x2 +(3^99-1)/3^99x2
2A=(2x3^100-200+3^100-3)/3^100x2
=(3^101-203)/3^100x2
ta c/m 2a<3/2 là ok
*nhân chéo lên =>2(3^101-203)<3^101x2
đồng nghĩa với 2x3^101 -406<3^101x2 (điều này luôn đúng)
=>bài toán đc chứng minh
Ta có:
\(\frac{1}{2^2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
...
\(\frac{1}{100^2}< \frac{1}{99.100}\)
\(\Rightarrow A=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)
\(\Leftrightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(\Leftrightarrow A< 1-\frac{1}{100}< 1\left(đpcm\right)\)
giúp mk vs các bạn ưi ! mk đang cần gấp ai nhanh mik tích cho !nhanh nha help me!thank nhìu
a, Gọi d là ƯC(12n + 1; 30n + 2 ), ta có :
12n + 1 chia hết cho d => 5( 12n + 1 ) chia hết cho d
30n + 2 chia hết cho d => 2 ( 30n + 2 ) chia hết cho d
-> 5( 12n + 1 ) - 2( 30n + 2 ) chia hết cho d
=> 1 chia hết cho d
vậy d = 1 nên 12n + 1 và 30n + 2 nguyên tố cùng nhau
=> \(\frac{12n+1}{30n+2}\)là phân số tối giản
b, ta có : \(\frac{1}{2^2}< \frac{1}{1.2}=\frac{1}{1}-\frac{1}{2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)
\(\frac{1}{4^2}< \frac{1}{3.4}=\frac{1}{3}-\frac{1}{4}\)
.....
\(\frac{1}{100^2}< \frac{1}{99.100}=\frac{1}{99}-\frac{1}{100}\)
Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 1-\frac{1}{100}=\frac{99}{100}< 1\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 1\)