K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3 2019

-Với n=1, ta thấy bthức đúng.

-Với n=k, có: \(\frac{1}{4+1^4}+\frac{3}{4+3^4}+...+\frac{2k-1}{4+\left(2k-1\right)^4}=\frac{k^2}{4k^2+1}=\frac{1}{4}-\frac{1}{4}.\frac{1}{4k^2+1}\)

-Giả sử bthức đúng với n=k+1, có:

\(\left(\frac{1}{4}-\frac{1}{4}.\frac{1}{4\left(k+1\right)^2+1}\right)-\left(\frac{1}{4}-\frac{1}{4}.\frac{1}{4k^2+1}\right)\)

\(=\frac{1}{4}\left(\frac{1}{4k^2+1}-\frac{1}{4\left(k+1\right)^2+1}\right)\)

\(=\frac{2k+1}{\left(4k^2+1\right)\left(4\left(k+1\right)^2+1\right)}=\frac{2k+1}{4+\left(2k+1\right)^4}\)

Vậy ta có đpcm.

Bài 1: 

b) Ta có: \(\left(2n-3\right)\left(2n+3\right)-4n\left(n-9\right)\)

\(=4n^2-9-4n^2+36n\)

\(=36n-9⋮9\)

18 tháng 6 2019

\(n^4+2n^3+2n^2+2n+1=\left(n^4+2n^3+n^2\right)+\left(n^2+2n+1\right)=\left(n^2+1\right)\left(n+1\right)^2\)

18 tháng 6 2019

Voi n=0 

=>n4+2n3+2n2+2n+1=1=12

9 tháng 10 2019

Câu hỏi của Nghĩa Nguyễn - Toán lớp 9 - Học toán với OnlineMath

21 tháng 3 2018

giúp mình nhanh lên các bạn ơi

AH
Akai Haruma
Giáo viên
24 tháng 3 2018

Lời giải:

Ta có: \(4+(2n-1)^4=[(2n-1)^2+2]^2-[2(2n-1)]^2\)

\(=[(2n-1)^2+2-2(2n-1)][(2n-1)^2+2+2(2n-1)]\)

\(\Rightarrow \frac{2n-1}{4+(2n-1)^4}=\frac{2n-1}{[(2n-1)^2+2-2(2n-1)][(2n-1)^2+2+2(2n-1)]}\)

\(=\frac{1}{4}\left(\frac{1}{(2n-1)^2+2-2(2n-1)}-\frac{1}{(2n-1)^2+2+2(2n-1)}\right)\)

Do đó:

\(\frac{1}{4+1^4}=\frac{1}{4}(1-\frac{1}{5})\)

\(\frac{3}{4+3^4}=\frac{1}{4}(\frac{1}{5}-\frac{1}{17})\)

\(\frac{5}{4+5^4}=\frac{1}{4}(\frac{1}{17}-\frac{1}{37})\)

......

Do đó:

\(\frac{1}{4+1^4}+\frac{3}{4+3^4}+...+\frac{2n-1}{4+(2n-1)^4}=\frac{1}{4}(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{17}+...+\frac{1}{(2n-1)^2+2-2(2n-1)}-\frac{1}{(2n-1)^2+2+2(2n-1)})\)

\(=\frac{1}{4}(1-\frac{1}{(2n-1)^2+2+2(2n-1)})=\frac{1}{4}(1-\frac{1}{(2n-1+1)^2+1})\)

\(=\frac{1}{4}(1-\frac{1}{4n^2+1})=\frac{n^2}{4n^2+1}\)

Ta có đpcm.

25 tháng 3 2018

n=1 ; \(\dfrac{1}{4+1^4}=\dfrac{1}{5}=\dfrac{1^2}{4.^2+1}=\dfrac{1}{5};dung\)

giả sử n =k đúng \(\Leftrightarrow S=\dfrac{1}{4+1^4}+...+\dfrac{2k-1}{4+\left(2k-1\right)^4}=\dfrac{k^2}{4k^2+1}\) (*)

cần c/m đúng n =k+1 ;

c/m

với n=k+1

\(S=\left(\dfrac{1}{4+1^4}+...+\dfrac{2k-1}{4+\left(2k-1\right)^4}\right)+\dfrac{2\left(k+1\right)-1}{4+\left(2\left(k+1\right)-1\right)^4}\)

từ (*) =>\(S=\dfrac{k^2}{4k^2+1}+\dfrac{2\left(k+1\right)-1}{4+\left(2\left(k+1\right)-1\right)^4}\)

\(k+1=t\Leftrightarrow k=t-1\)

\(S=\dfrac{t^2-2t+1}{4\left(t^2-2t+1\right)+1}+\dfrac{2t-1}{4+\left(2t-1\right)^4}\)

\(S=\dfrac{t^2-2t+2}{4t^2-8t+5}+\dfrac{2t-1}{\left(4t^2+1\right)\left(4t^2-8t+5\right)}=\dfrac{\left(t^2-2t+1\right)\left(4t^2+1\right)+2t-1}{\left(4t^2+1\right)\left(4t^2-8t+5\right)}\)\(S=\dfrac{t^2\left(4t^2-8t+5\right)}{\left(4t^2+1\right)\left(4t^2-8t+5\right)}=\dfrac{t^2}{\left(4t^2+1\right)}=\dfrac{\left(k+1\right)^2}{4\left(k+1\right)^2+1}\)

Vậy tổng trên đúng với k +1

theo Quy nạp ta có dpcm

15 tháng 5 2021

Bài 2:

\(\left(2n+3\right)^2-9\)

\(\rightarrow4n^2+12n+9-9\)

\(\rightarrow4n^2=12n\)

\(\rightarrow4n.\left(n+3\right)\)

\(\rightarrow4⋮4\)

\(\rightarrow4n⋮4\)

\(\rightarrow4n.\left(n+3\right)⋮4\)

\(\rightarrow\left(2n+3\right)^2-9⋮4\)

18 tháng 7 2018

a) 2n^3 + 2n^2 - 2n^3 - 2n^2 + 6n = 6n chia hết 6

b) 3n - 2n^2 - ( n + 4n^2 - 1 - 4n ) - 1 

= 3n - 2n^2 - n - 4n^2 + 1 + 4n -1

= 6n - 6n^2 chia hết 6

c) m^3 + 8 - m^3 + m^2 - 9 - m^2 - 18

= - 19

18 tháng 7 2018

Bài 1:

\(2n^2\left(n+1\right)-2n\left(n^2+n-3\right)\)

\(=2n\left(n^2+n-n^2-n+3\right)\)

\(=6n\)\(⋮\)\(6\)
Bài 2:

\(n\left(3-2n\right)-\left(n-1\right)\left(1+4n\right)-1\)

\(=3n-2n^2-\left(n+4n^2-1-4n\right)-1\)

\(=6n-6n^2=6\left(n-n^2\right)\)\(⋮\)\(6\)

Bài 3:

\(\left(m^2-2m+4\right)\left(m+2\right)-m^3+\left(m+3\right)\left(m-3\right)-m^2-18\)

\(=m^3+8-m^3+m^2-9-m^2-18\)

\(=-19\)

\(\Rightarrow\)đpcm