K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
18 tháng 11 2023

Bài 1: Gọi hai số lẻ liên tiếp là $2k+1$ và $2k+3$ với $k$ tự nhiên.

Gọi $d=ƯCLN(2k+1, 2k+3)$

$\Rightarrow 2k+1\vdots d; 2k+3\vdots d$

$\Rightarrow (2k+3)-(2k+1)\vdots d$

$\Rightarrow 2\vdots d\Rightarrow d=1$ hoặc $d=2$

Nếu $d=2$ thì $2k+1\vdots 2$ (vô lý vì $2k+1$ là số lẻ)

$\Rightarrow d=1$

Vậy $2k+1,2k+3$ nguyên tố cùng nhau. 

Ta có đpcm.

AH
Akai Haruma
Giáo viên
18 tháng 11 2023

Bài 2:

a. Gọi $d=ƯCLN(n+1, n+2)$

$\Rightarrow n+1\vdots d; n+2\vdots d$

$\Rightarrow (n+2)-(n+1)\vdots d$

$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $(n+1, n+2)=1$ nên 2 số này nguyên tố cùng nhau. 

b.

Gọi $d=ƯCLN(2n+2, 2n+3)$

$\Rightarrow 2n+2\vdots d; 2n+3\vdots d$

$\Rightarrow (2n+3)-(2n+2)\vdots d$ hay $1\vdots d$
$\Rightarrow d=1$.

Vậy $(2n+2, 2n+3)=1$ nên 2 số này nguyên tố cùng nhau.

a) Gọi UCLN \(3n+7\)và \(5n+12\)là \(d\)

\(\Rightarrow\left(3n+7\right)⋮d\)và \(\left(5n+12\right)⋮d\)

Xét 2 biểu thức :

\(\Rightarrow\left(3n+7\right).5⋮d\Rightarrow15n+35⋮d\)

\(\Rightarrow\left(5n+12\right).3⋮d\Rightarrow15n+36⋮d\)

\(\Rightarrow\left(15n+37-15n-36\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\Rightarrow3n+7;5n+12\)nguyên tố cùng nhau.

25 tháng 11 2015

Đặt ƯCLN(2n+1; 2n+3) = d

=> (2n + 3) - (2n + 1) chia hết cho d

=> 2 chia hết cho d

=> d \(\in\) Ư(2) = {1; 2}

Mà 2n + 1 và 2n + 3 là hai số lẻ nên ước chung lớn nhất của chúng ko thể là 2.

Vậy d = 1 nên 2n + 1 và 2n + 3 nguyên tố cùng nhau 

NM
23 tháng 11 2020

gọi a là ước chung lớn nhất của 2n+1 và 3n+2

do đó a phải là ước của \(2\left(3n+2\right)-3\left(2n+1\right)=1\) do đó a=1

hay 2n+1 và 3n+2 là hai số nguyên tố cùng nhau.

b.gọi b là ước chung lớn nhất của 2n+3 và 4n+5

do đó b phải là ước của \(2\left(2n+3\right)-\left(4n+5\right)=1\)do đó b=1

hay 2n+3 và 4n+5 là hai số nguyên tố cùng nhau

14 tháng 11 2016

de thui

nhung mk phai di hc rui

byeeeeeeeee

cac bn 

nhaE@@@

hihi6Công Chúa Ori

 hoc gioi!


Gọi ƯCLN(2n + 3; 2n + 1) = d

\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\2n+1⋮d\end{cases}}\)          

=> 2n + 3 - (2n + 1) \(⋮\)d

=> 2n + 3 - 2n - 1 \(⋮\)d

=> 2 \(⋮\)d          => d  ∈ {1;2}

Do 2n + 1 lẻ => d lẻ => d = 1

Vậy  ∀ x  ∈ N thì 2n + 3 và 2n + 1 là 2 số nguyên tố cùng nhau

21 tháng 11 2018

\(Taco::::::::::::::::::::::::::::::::::::::::::::::::::::::::::\)

\(GỌi:ƯCLN\left(2n+1;7n+2\right)=d\Rightarrow7\left(2n+1\right)-2\left(7n+2\right)⋮d\Rightarrow3⋮d\)

Để 2n+1 và 7n+2 nguyên tố cùng nhau thì: 2n+1 hoặc 7n+2 ko chia hết cho 3

Giả sử: 2n+1 chia hết cho 3

=> 2n+1-3 chia hết cho 3

=> 2n-2 chia hết cho 3

=> 2(n-1) chia hết cho 3=> n-1 chia hết cho 3

Giả sử: 7n+2 chia hết cho 3

=> 7n+2-9 chia hết cho 3

=>.........

Vậy với n khác 3k+1;3k+2 thì thỏa mãn

21 tháng 11 2018

MK nhầm chỉ khác 3k+1 nha bỏ đoạn dưới

4 tháng 11 2023

Ko hiểu ????

4 tháng 11 2023

a)nếu 2n+1 và 3n+2 là các số  nguyên tố cùng nhau thì chúng phải có ƯCLN =1 

giả sử ƯCLN(2n+1,3n+2)=d

=>2n+1 chia hết cho d ,  3n+2 chia hết cho d 

=>3(2n+1)chia hết cho d , 2(3n+2)chia hết cho d

=>6n+3 chia hết cho d, 6n +4 chia hết cho d

=>(6n+4)  - (6n+3) chia hết cho d

=>6n+4-6n-3=1 chia hết cho d

=>d=1

vậy ƯCLN(2n+1,3n+2)=1 (đpcm)

đpcm là điều phải chứng minh

12 tháng 12 2023

Gọi d là ước chung lớn nhất của 2n+1 và 3n+1 ta được:

\(\left\{{}\begin{matrix}\left(2n+1\right)⋮d\\\left(3n+1\right)⋮d\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}3\left(2n+1\right)⋮d\\2\left(3n+1\right)⋮d\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\left(6n+3\right)⋮d\\\left(6n+2\right)⋮d\end{matrix}\right.\Rightarrow\left[\left(6n+3\right)-\left(6n+2\right)\right]⋮d\)

\(\Rightarrow\left(6n+3-6n-2\right)⋮d\Rightarrow1⋮d\)

Do đó: \(d=\pm1\)

\(\LeftrightarrowƯCLN\left(2n+1;3n+1\right)=1\)

Vậy \(2n+1\) và \(3n+1\) là nguyên tố cùng nhau.

 

12 tháng 12 2023

Gọi d là ƯCLN(2n+1,3n+1)

Ta có: \(\left\{{}\begin{matrix}2n+1⋮d\\3n+1⋮d\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}3\left(2n+1\right)⋮d\\2\left(3n+1\right)⋮d\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}6n+3⋮d\\6n+2⋮d\end{matrix}\right.\)

\(\Leftrightarrow\left(6n+3\right)-\left(6n+2\right)⋮d\)

\(\Leftrightarrow1⋮d\Leftrightarrow d=\pm1\)

=> ƯCLN(2n+1,3n+1)=1

=> đpcm