K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2015

76+75-74=74.(72+7-1)=74.55=74.5.11

=>76+75-74 chia hết cho 11

câu còn lại tương tự

7 tháng 10 2015

Đặt 74 ra ngoài

9 tháng 8 2019

Gọi chữ số hàng chục và hàng đơn vị của số là a

Khi đó chữ số hàng trăm của số đó là 7 - 2 * a ( vì tổng các chữ số của số đó là 7 )

Do đó số đó có dạng :\(\overline{\left(7-2\times a\right)aa}=100\times\left(7-2\times a\right)+10\times a+a\)

\(=700-200\times a+10\times a+a\)

\(=700-190\times a+a\)

\(=700-189\times a\)

Ta có : \(700⋮7;189⋮7\Rightarrow700-189\times a⋮7\)

Vậy số đó chia hết cho 7

9 tháng 8 2019

Gọi số đó là Aef\(\left(\overline{ef}⋮4\right)\)

Ta có : \(\overline{Aef}=10^n\times d+\overline{ef}=4\times25\times10^{n-1}\times d+\overline{ef}\)( với n là số mũ của A )

Vì : \(4⋮4;\overline{ef}⋮4\)

\(\Rightarrow10^n\times d+\overline{ef}⋮4\)

\(\Rightarrow\overline{Aef}⋮4\)

Vậy nếu 1 số có 2 chữ số tận cùng chia hết cho 4 thì số đó chia hết cho 4

19 tháng 2 2022

a) \(7^6+7^5-7^4=7^4\left(7^2+7-1\right)=7^4\left(49+7-1\right)=7^4.55⋮55\)

b) \(16^5+2^{15}=\left(2^4\right)^5+2^{15}=2^{20}+2^{15}=2^{15}\left(2^5+1\right)=2^{15}\left(32+1\right)=2^{15}.33⋮33\)

c) \(81^7-27^9-9^{13}=\left(3^4\right)^7-\left(3^3\right)^9-\left(3^2\right)^{13}=3^{28}-3^{27}-3^{26}=3^{26}\left(3^2-3-1\right)=3^{26}.5=3^{22}.3^4.5=3^{22}.405⋮405\)

a: \(=7^4\left(7^2+7-1\right)=7^4\cdot55⋮55\)

b: \(=2^{20}+2^{15}=2^{15}\left(2^5+1\right)=2^{15}\cdot33⋮33\)

c: \(=3^{28}-3^{27}-3^{26}=3^{26}\left(3^2-3-1\right)=3^{26}\cdot5=3^{22}\cdot405⋮405\)

5 tháng 4 2015

a)

Gọi:số phải tìm là A (100=<a=<999)

     :thương và số dư là x (x thuộc N*)

Ta có :

A = 75x+x

A=76x

=>A là số lớn nhất có 3 chữ số chia hết cho 6

Mà 999 chia 76 dư11

=>A=999 - 76 =923

 

 

 

22 tháng 3 2017

kết quả đúng = 988 bạn ạ

10 tháng 11 2023

\(A=7+7^2+7^3+7^4+7^5+7^6+7^7+7^8\)

\(A=\left(7+7^3\right)+\left(7^2+7^4\right)+\left(7^5+7^7\right)+\left(7^6+7^8\right)\)

\(A=7\cdot\left(7+7^2\right)+7^2\cdot\left(1+7^2\right)+7^5\cdot\left(1+7^2\right)+7^6\cdot\left(1+7^2\right)\)

\(A=7\cdot50+7^2\cdot50+7^5\cdot50+7^6\cdot50\)

\(A=50\cdot\left(7+7^2+7^5+7^6\right)\)

\(A=5\cdot10\cdot\left(7+7^2+7^5+7^6\right)\)

Ta có: 5 ⋮ 5

⇒ \(A=5\cdot10\cdot\left(7+7^2+7^5+7^6\right)\) ⋮ 5 (đpcm) 

10 tháng 11 2023

A = 7 + 72 + 73 + 74 + 75 + 76 + 77 + 78

A =  (7 + 73) + (72+ 74) + (75 + 77) + (76 + 78)

A = 7.(1 + 72)  + 72.(1 + 72) + 75.(1 + 72) + 76.(1 + 72)

A = 7.( 1 + 49) + 72.( 1 + 49) + 75.(1 + 49) + 76. (1 + 49)

A = 7.50 + 72.50 + 75.50 + 76.50

A = 50.(7 + 72 + 75 + 76)

Vì 50 ⋮ 5 nên A = 50.(7 + 72 + 76) ⋮ 5 đpcm

25 tháng 11 2021

Answer:

\(3a+2b⋮19\)

\(\Rightarrow10.\left(3a+2b\right)⋮19\)

\(\Rightarrow10.\left(3a+2b\right)-19.\left(a+b\right)⋮19\)

\(\Rightarrow\left(30a+20b\right)-19a-19b⋮19\)

\(\Rightarrow11a+b⋮19\)

19 tháng 6 2017

Ta có: 7 số nguyên đó sẽ có dạng toàn là 2k hoặc toàn là 2k+1 hoặc cả 2k và 2k+1:

Xét TH1: (toàn có dạng 2k);

suy ra cả 7 số đều là chẵn nên chia hết cho 2 và chia hết cho : 7x2=14;

Mà 14 chia hết cho 7 nên TH1 chia hết cho 7;

Xét TH2: (toàn có dạng 2k+1);

suy ra 7 x (2k+1) chia hết cho 7;

Vậy TH2 chia hết cho 7;

Xét TH3: Tồn tại ít nhất 2 chẵn và 2 lẻ nên cũng tồn tại ít nhất 1 tổng chia hết cho 7;

Ta có điều phải chứng minh...

19 tháng 6 2017


cái đề bài của bạn hơi bị sao í..."tổng của 1 số hạng" là  sao z?