Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-x+1>0\)
\(\Leftrightarrow x^2-2x.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}>0\)
\(\Leftrightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)(luôn đúng)
\(\RightarrowĐPCM\)
\(A=2x^2+4y^2+4xy-6z+10\)
\(=\left(x^2+4y^2+4xy\right)+\left(x^2-6x+9\right)+1\)
\(=\left(x+2y\right)^2+\left(x-3\right)^2+1\)
Mà \(\hept{\begin{cases}\left(x+2y\right)^2\ge0\\\left(x-3\right)^2\ge0\end{cases}}\)
\(\Rightarrow A\ge0+0+1=1>0\)
Vậy ...
Ta có \(Q=x^2+y^2+36-2xy-12x+12y+5y^2-10y+5+1976\)
\(=\left(x-y-6\right)^2+5\left(y-1\right)^2+1976\ge0\)
=>Q luôn nhận giá trị dương với mọi x,y (ĐPCM)
^_^
\(Q=x^2+6y^2-2xy-12x+2y+2017\)
\(Q=\left(x^2-2xy+y^2\right)-2\left(x-y\right)6+36+5y^2-10x+5+1976\)
\(Q=\left(x-y\right)^2-12\left(x-y\right)+64+5\left(y^2-2y+1\right)+1976\)
\(Q=\left(x-y-6\right)^2+5\left(y-1\right)^2+1976\)
Mà, \(\left(x-y-6\right)^2,5\left(y-1\right)^2\ge0\)
\(\Rightarrow Q>0\)
Sửa đề: \(A=3x^2-6x+4=3\left(x^2-2x+\dfrac{4}{3}\right)\)
\(A=3\left(x^2-2x+1+\dfrac{1}{3}\right)\)
\(A=3\left(x^2-2x+1\right)+1\)
\(A=3\left(x-1\right)^2+1>0\left(đpcm\right)\)
Ta có : x2 - xy + y2 + 1
\(=x^2-2x.\frac{y}{2}+\frac{y^2}{4}+\frac{3y^2}{4}+1\)
\(=\left(x-\frac{y}{2}\right)^2+\left(\frac{3y}{2}\right)^2+1\)
Mà \(\left(x-\frac{y}{2}\right)^2\ge0\forall x\)
\(\left(\frac{3y}{2}\right)^2\ge0\forall x\)
Nên \(\left(x-\frac{y}{2}\right)^2+\left(\frac{3y}{2}\right)^2+1\ge1\forall x\)
Vậy \(\left(x-\frac{y}{2}\right)^2+\left(\frac{3y}{2}\right)^2+1>0\forall x\)
Hay : x2 - xy + y2 + 1 > 0 \(\forall x\)
\(x^2+3xy+4y^2+1=\left(x^2+2.x.\frac{3}{2}y+\frac{9}{4}y^2\right)+\frac{7}{4}y^2+1\)
\(=\left(x+\frac{3}{2}y\right)^2+\frac{7}{4}y^2+1\)
Vì \(\left(x+\frac{3}{2}y\right)^2\ge0;\frac{7}{4}y^2\ge0\) nên \(\left(x+\frac{3}{2}y\right)^2+\frac{7}{4}y^2\ge0\)
\(\Rightarrow\left(x+\frac{3}{2}y\right)^2+\frac{7}{4}y^2+1\ge1>0\)(đpcm)
x^2-x+1
=x^2-x+1/4+3/4
=(x-1/2)^2+3/4
Vì (x-1/2) lớn hơn bằng 0 với mọi x nên (x-1/2)^2+3/4>0
Bạn viết thiếu đề bài nhé, phải là -x2 + x - 1 nhỏ hơn hoặc bằng 0 với mọi x!! ^ . ^
Ta có:
-x2 + x - 1 = - (x2 - x + 1)
= - (x - 1)2 (hằng đẳng thức đấy bạn)
Vì (x - 1)2 \(\ge\)0 với mọi x => - (x - 1)2 \(\le\)với mọi x.
Dấu bằng xảy ra <=> x - 1 = 0 <=> x = 1.
_Kik nhé!! ^ ^
Bài 1:
a) \(x^2-x+1\)
\(=x^2-x+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0;\forall x\)
b) \(25x^2+10x+2\)
\(=25x^2+10x+1+1\)
\(=\left(5x+1\right)^2+1\ge1>0;\forall x\)
c) \(3x^2+2x+14\)
\(=3x^2+2x+\dfrac{1}{3}+\dfrac{41}{3}\)
\(=\left(\sqrt{3}x+\dfrac{\sqrt{3}}{3}\right)^2+\dfrac{41}{3}\ge\dfrac{41}{3}>0;\forall x\)
d) \(2x^2+y^2-2xy-2x+2\)
\(=x^2+y^2-2xy-2x+x^2+1+1\)
\(=\left(x-y\right)^2+\left(x-1\right)^2+1\ge1>0;\forall x\)
Vậy ...
a) Ta có:
\(x^2+2xy+y^2+1\)
\(=\left(x+y\right)^2+1\)
Vì \(\left(x+y\right)^2\ge0\) với mọi x và y
\(\Rightarrow\left(x+y\right)^2+1\ge1\)
\(\Rightarrow\left(x+y\right)^2+1>0\) với mọi x
b) Ta có:
\(x^2-x+1\)
\(=x^2-2x.\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}+1\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Vì \(\left(x-\dfrac{1}{2}\right)^2\ge0\) với mọi x
\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\) với mọi x