Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
A = \(\dfrac{1}{10}\) + \(\dfrac{1}{11}\) + \(\dfrac{1}{12}\) +.................+ \(\dfrac{1}{99}\) + \(\dfrac{1}{100}\) ( 91 số hạng)
A = \(\dfrac{1}{10}\) + \(\left(\dfrac{1}{11}+\dfrac{1}{12}+...........+\dfrac{1}{99}+\dfrac{1}{100}\right)\)
Vì \(\dfrac{1}{11}>\dfrac{1}{100}\)
\(\dfrac{1}{12}>\dfrac{1}{100}\)
.................................
\(\dfrac{1}{99}< \dfrac{1}{100}\)
\(=>\) \(A\) > \(\dfrac{1}{10}+\left(\dfrac{1}{100}+\dfrac{1}{100}+........+\dfrac{1}{100}\right)\) (90 số hạng \(\dfrac{1}{100}\) )
A > \(\dfrac{1}{10}+\dfrac{90}{100}\)
\(A\) > \(\dfrac{1}{10}+\dfrac{9}{10}\)
=> A > 1
=> đpcm
\(\frac{1}{10}+\frac{1}{11}+...+\frac{1}{19}>\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}=\frac{10}{20}=\frac{1}{2}\)
\(\frac{1}{20}+\frac{1}{21}+...+\frac{1}{29}>\frac{1}{30}+\frac{1}{30}+...+\frac{1}{30}=\frac{10}{30}=\frac{1}{3}\)
\(\frac{1}{30}+\frac{1}{31}+...+\frac{1}{39}>\frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}=\frac{10}{40}=\frac{1}{4}\)
\(\Rightarrow\frac{1}{10}+\frac{1}{11}+...+\frac{1}{39}>\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\)
\(\frac{13}{12}\) \(>\) \(1\)
đề sai hả bạn số hạng cuối có phải là \(\frac{1}{100}\)đúng không
a, Ta có: \(A=\frac{1}{11}+\frac{1}{12}+...+\frac{1}{50}=\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{30}\right)+\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{60}\right)\)
Nhận xét: \(\frac{1}{11}+\frac{1}{12}+....+\frac{1}{30}>\frac{1}{30}+\frac{1}{30}+...+\frac{1}{30}=\frac{20}{30}=\frac{2}{3}\)
\(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{60}>\frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}=\frac{20}{60}=\frac{1}{3}\)
\(\Rightarrow A>\frac{2}{3}+\frac{1}{3}=1>\frac{1}{2}\)
Vậy A > 1/2
b, Ta có: \(\frac{1}{50}>\frac{1}{100};\frac{1}{51}>\frac{1}{100};........;\frac{1}{99}>\frac{1}{100}\)
\(\Rightarrow B>\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}=\frac{50}{100}=\frac{1}{2}\)
Vậy B > 1/2
c, Ta có: \(C=\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+...+\frac{1}{100}=\frac{1}{10}+\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{100}\right)\)
Nhận xét: \(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{100}>\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}=\frac{90}{100}=\frac{9}{10}\)
\(\Rightarrow C>\frac{1}{10}+\frac{9}{10}=\frac{10}{10}=1\)
Vậy C > 1
1/10+1/11+…+1/19 > 1/20+1/20+…+1/20 = 10/20 = 1/2
1/20+1/21+…+1/29 > 1/30+1/30+…+1/30 = 10/30 = 1/3
1/30+1/31+…+1/39 > 1/40+1/40+…+1/40 = 10/40 = 1/4
=> A>1
Ta có:\(\frac{1}{10}+\frac{1}{11}+...+\frac{1}{100}\)> \(\frac{1}{10}+\left(\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}\right)\)[ 90 p/s \(\frac{1}{100}\)]
= \(\frac{1}{10}+\frac{90}{100}=\frac{10}{100}+\frac{90}{100}\)=\(\frac{100}{100}=1\)
Vậy \(\frac{1}{10}+\frac{1}{11}+...+\frac{1}{100}\)>1
\(\frac{1}{10}+\frac{1}{11}+...+\frac{1}{100}\)\(\frac{1}{10}+\frac{1}{11}+...+\frac{1}{100}\)