K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 9 2016

Ta có: B = 3 + 35 + 37 + .... + 31991

=> B = (3 + 35) + (37 + 311) + .... + (31987 + 31991

=> B = 3.(1 + 34) + 37.(1 + 34) + ... + 31987.(1 + 34)

=> B = 3.82 + 37.82 + .... + 31987. 82

=> B = 82.(3 + 37 + ... + 31987) chia hết cho 41

20 tháng 2 2018

số đó là 333,666,999

4 tháng 12 2022

bạn có bít tại sao phải gộp chúng và nhau k nhỉ :)) ý a nha

 

19 tháng 8 2016

Số số hạng của B là (1991-1):2+1=996

Để chứng minh B chia hết cho 13, ta nhóm 3 số 1 bộ

B=(3+33+35)+(37+39+311)+...+(31987+31989+31991)

B=3(1+32+34)+37(1+32+34)+...+31987(1+32+34)

B=3.91+37.91+...+31987.91

B=91.(3+37+...+31987)

Vì 91 chia hết cho 13 nên B chia hết cho 13

Để chứng tỏ B chia hết cho 41, ta nhóm 4 số 1 bộ

B=(3+33+35+37)+(39+311+313+315)+...+(31985+31987+31989+31991)

B=3(1+32+34+36)+39(1+32+34+36)+...+31985(1+32+34+36)

B=3.820+39.820+31985.820

B=820.(3+39+31985)

Vì 820 chia hết cho 41 nên B chia hết cho 41

19 tháng 8 2016

\(B=3+3^3+3^5+...+3^{1991}\)

\(B=\left(3+3^3+3^5\right)+...+\left(3^{1997}+3^{1998}+3^{1999}\right)\)

\(B=273+....+\left(3^{1997}+3^{1998}+3^{1999}\right)\)đều  chia hết cho 13

\(=>B\)chia hết cho \(13\)\(\left(đpcm\right)\)

\(B=3+3^3+...+3^{1991}\)

\(B=\left(3+3^3+3^5+3^7\right)+....+\left(3^{1996}+3^{1997}+3^{1998}+3^{1999}\right)\)

\(B=2460+...+\left(3^{1996}+3^{1997}+3^{1998}+3^{1999}\right)\)chia hết cho 41

\(=>B\)chia hết cho \(41\left(đpcm\right)\)

22 tháng 2 2016

Đề đúng là: -12....nhé!

-12.(x - 5) + 7.(3 - x) = 5

=> -12x + 60 + 21 - 7x = 5

=> -12x - 7x = 5 - 21 - 60

=> -19x = -76

=> x = 4

NM
16 tháng 8 2021

\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+..+\left(2^{59}+2^{60}\right)=3.2+3.2^3+3.2^5+..+3.2^{59}\) Vậy A chia hết cho 3

\(A=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+..+\left(2^{58}+2^{59}+2^{60}\right)=7.2+7.2^4+..+7.2^{58}\) Vậy A chia hết cho 7

\(A=\left(2+2^2+2^3+2^4\right)+..+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)=2.15+2^5.15+..+2^{57}.15\) Vậy A chia hết cho 15.

\(B=\left(3+3^3+3^5\right)+..+\left(3^{1987}+3^{1989}+3^{1991}\right)=3.91+3^7.91+..+3^{1986}.91\)

mà 91 chia hết cho 13 nên B chia hết cho 13.

\(B=\left(3+3^3+3^5+3^7\right)+..+\left(3^{1985}+3^{1987}+3^{1989}+3^{1991}\right)=3.820+3^9.820+..+3^{1985}.820\)Mà 820 chia hết cho 41 nên B chia hết cho 41.

D : để ý rằng \(11^k\) đều có đuôi là 1 

nên D có đuôi là đuôi của \(1+1+..+1=10\)

Vậy D chia hết cho 5

14 tháng 8

Dễ mà bn tự làm đi

9 tháng 2 2021

B= 3 + 3+ 3+ ... + 31991= (3 + 3+ 35) + (37+ 3+ 311 ) + ... + (31987 + 31989 + 31991).

             = 3 x (1 + 3+ 34) + 37 x (1 + 3+ 34) + ... + 31987 x (1 + 3+ 34).

             = 3 x 91 + 37 x 91 + ... + 31987 x 91= 3 x 7 x 13 + 3 x 7 x 13 + ... + 31987 x 7 x 13.

             = 13 x ( 3 x 7 + 37 x 7 + ... + 31987 x 7).

Vì B = 13 x ( 3 x 7 + 37 x 7 + ... + 31987 x 7) nên B chia hết cho 13.

           B= (3 + 3+ 3+ 37) +  ... + (31985 + 31987 + 31989 + 31991).

             = 3 x (1 + 3+ 3 + 36) +  ... + 31985 x (1 + 3+ 3​+ 36).

             = 3 x 820 + ... + 31985 x 820= 3 x 20 x 41 + ... + 31985 x 20 x 41.

             = 41 x ( 3 x 20 + .. +  31985 x 20)

Vì B =41 x ( 3 x 20 + .. +  31985 x 20) nên B chia hết cho 41.

9 tháng 2 2021
Sai đề bạn ơi
19 tháng 1 2022

\(5+5^3+5^5+5^7+..+5^{27}\)

\(=\left(5+5^3\right)+5^4\left(5+5^3\right)+...+5^{24}\left(5+5^3\right)\)

\(=130+130\cdot5^4+...+130\cdot5^{24}\)

\(=130\left(1+5^4+..5^{24}\right)\)

Vì \(130⋮26\Rightarrow5+5^3+5^5+...+5^{27}⋮26\left(đpcm\right)\)