Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\( Để A=\frac{n+10}{2n-8}\)CÓ GIÁ TRỊ NGUYÊN
\(\Rightarrow n+10⋮2n-8\)
\(\Rightarrow2\left(n+10\right)⋮2\left(n-4\right)\)
\(\Rightarrow n+10⋮n-4\)
\(\Rightarrow\left(n-4\right)+14⋮n-4\)
\(\Rightarrow n-4\inƯ\left(14\right)=\left\{\pm1;\pm2;\pm7;\pm14\right\}\)
\(\Rightarrow n\in\left\{-10;-3;2;3;5;6;11;18\right\}\)
Vì n là số tự nhiên \(\Rightarrow n\in\left\{2;3;5;6;11;18\right\}\)
b) \(\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{2021.2023}\)
\(=\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2021}-\dfrac{1}{2023}\)
\(=\dfrac{1}{1}-\dfrac{1}{2023}\)
\(=\dfrac{2022}{2023}\)
\(b)\)\(A=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{2021.2023}\)
\(2A=\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{2021.2023}\)
\(2A=\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2021}-\dfrac{1}{2023}\)
\(2A=\dfrac{1}{1}-\dfrac{1}{2023}\)
\(2A=\dfrac{2022}{2023}\)
\(A=\dfrac{2022}{2023}:2\)
\(A=\dfrac{1011}{2023}\)