Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\frac{x^2}{y^2}+\frac{y^2}{x^2}+4\ge3\left(\frac{x}{y}+\frac{y}{x}\right)\)
\(\Leftrightarrow\left(\frac{x}{y}+\frac{y}{x}\right)^2-2+4-3\left(\frac{x}{y}+\frac{y}{x}\right)\ge0\)
\(\Leftrightarrow\left(\frac{x}{y}+\frac{y}{x}\right)^2-3\left(\frac{x}{y}+\frac{y}{x}\right)+2\ge0\)
\(\Leftrightarrow\left(\frac{x}{y}+\frac{y}{x}-1\right)\left(\frac{x}{y}+\frac{y}{x}+1\right)-3\left(\frac{x}{y}+\frac{y}{x}-1\right)\ge0\)
\(\Leftrightarrow\left(\frac{x}{y}+\frac{y}{x}-1\right)\left(\frac{x}{y}+\frac{y}{x}+2\right)\ge0\left(1\right)\)
Đến đây có 2 cách giải quyết
Cách 1:
\(\left(1\right)\Leftrightarrow\frac{x^2-xy+y^2}{xy}\cdot\frac{\left(x+y\right)^2}{xy}\ge0\)
\(\Leftrightarrow\frac{\left(x+y\right)^2\left(x^2-xy+y^2\right)}{x^2y^2}\ge0\)
\(\Leftrightarrow\frac{\left(x+y\right)^2\left[\left(x-\frac{y}{2}\right)^2+\frac{3y^2}{4}\right]}{x^2y^2}\ge0\left(true!!!\right)\)
Cách 2 là đặt ẩn:)
Đặt \(\frac{x}{y}+\frac{y}{x}=t\Rightarrow t^2=\left(\frac{x}{y}+\frac{y}{x}\right)^2\ge4\cdot\frac{x}{y}\cdot\frac{y}{x}=4\)
\(\Rightarrow\left|t\right|\ge2\)
Khi đó ta có:
\(\left(t+1\right)\left(t-2\right)\ge0\)
Nếu \(t\ge2\Rightarrow t+1>0;t-2\ge0\Rightarrow\left(t+1\right)\left(t-2\right)\ge0\)
Nếu \(t\le-2\Rightarrow t+1< 0;t-2< 0\Rightarrow\left(t+1\right)\left(t-2\right)>0\)
=> đpcm
1111111111111111111
\(VT=\Sigma\frac{xy+yz+zx}{xy}=3+\Sigma\frac{z\left(x+y\right)}{xy}\)
Đến đây để ý \(\frac{1}{2}\left[\frac{z\left(x+y\right)}{xy}+\frac{y\left(z+x\right)}{zx}\right]\ge\sqrt{\frac{\left(z+x\right)\left(x+y\right)}{x^2}}\left(\text{AM - GM}\right)\)
Là xong.
\(\Leftrightarrow\left(\frac{x}{y}+\frac{y}{x}\right)^2-3\left(\frac{x}{y}+\frac{y}{x}\right)+2\ge0\)
\(\Leftrightarrow\left(\frac{x}{y}+\frac{y}{x}-2\right)\left(\frac{x}{y}+\frac{y}{x}-1\right)\ge0\)(*)
+Nếu x,y cùng dấu: \(\frac{x}{y}>0,\frac{y}{x}>0\) Áp dụng côsi: \(\frac{x}{y}+\frac{y}{x}\ge2\)
\(\Rightarrow\frac{x}{y}+\frac{y}{x}-2\ge0;\frac{x}{y}+\frac{y}{x}-1>0\)
Suy ra (*) đúng => bất đẳng thức đã cho đúng.
+Nếu x,y khác dấu: \(\frac{x}{y}
Làm như bạn Mr Lazy cũng được nhưng hơi dài dòng. Sau đây mình xin trình bày cách này ngắn gọn hơn một chút
Ta đặt \(t=\frac{a}{b}+\frac{b}{a}\Rightarrow\left|t\right|=\left|\frac{a}{b}+\frac{b}{a}\right|=\left|\frac{a}{b}\right|+\left|\frac{b}{a}\right|\ge2\sqrt{\left|\frac{a}{b}\right|.\left|\frac{b}{a}\right|}=2\)
\(\Rightarrow t^2=\left(\frac{a}{b}+\frac{b}{a}\right)^2=\frac{a^2}{b^2}+\frac{b^2}{a^2}+2\)
\(\Rightarrow\frac{a^2}{b^2}+\frac{b^2}{a^2}=t^2-2\)\(\rightarrow\)Ta cần chứng minh BĐT \(t^2-2+4\ge3t\) Hay \(t^2+2\ge3t\left(1\right)\)
Thật vậy.
\(\left(1\right)\Leftrightarrow t^2-3t+2\ge0\)
\(\Leftrightarrow\left(t-1\right)\left(t-2\right)\ge0\)
Xét TH1 \(t\ge2\)
\(\Rightarrow\begin{cases}t-2\ge0\\t-1>0\end{cases}\Rightarrow\left(t-1\right)\left(t-2\right)\ge0\Rightarrow\)BĐT luôn đúng
Xét TH2 \(t\le-2\)
\(\Rightarrow\hept{\begin{cases}t-1< 0\\t-2< 0\end{cases}\Rightarrow\left(t-1\right)\left(t-2\right)>0\Rightarrow}\)BĐT luôn đúng
A=\(\left(1+x\right)\left(1+\frac{1}{y}\right)+\left(1+\frac{1}{x}\right)\left(1+y\right)=x+\frac{x}{y}+\frac{1}{y}+1+y+\frac{y}{x}+\frac{1}{x}+1\)
=\(\left(x+y+\frac{1}{x}+\frac{1}{y}\right)+\frac{x}{y}+\frac{y}{x}+2\)
mà x2+y2=1
=>2(x2+y2)>(=)(x+y)2
\(\Rightarrow x+y\le\sqrt{2}\)
áp dụng bất đẳng thức cô si ta có:
\(\left(x+y+\frac{1}{x}+\frac{1}{y}\right)+\frac{x}{y}+\frac{y}{x}+2\ge\left(x+y+\frac{4}{x+y}\right)+4\)
\(=\left[\left(x+y\right)+\frac{2}{x+y}+\frac{2}{x+y}\right]+4\ge2\sqrt{2}+\sqrt{2}+4=4+3\sqrt{2}\)
Bài dễ mừ, có phải Croatia thật ko vậy :)) (viết đề bị nhầm, là x,y,z dương chứ :))
Áp dụng Cauchy-Schwarz dạng cộng mẫu số:
\(\frac{x^2}{\left(x+y\right)\left(x+z\right)}+\frac{y^2}{\left(y+z\right)\left(y+x\right)}+\frac{z^2}{\left(z+x\right)\left(z+y\right)}\ge\)
\(\frac{\left(x+y+z\right)^2}{\left(x+y\right)\left(x+z\right)+\left(y+z\right)\left(y+x\right)+\left(z+x\right)\left(z+y\right)}=\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2+3\left(xy+yz+zx\right)}\)
\(=\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2+\left(xy+yz+zx\right)}\)
Xét \(xy+yz+zx\le\frac{\left(x+y+z\right)^2}{3}\Rightarrow\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2+\left(xy+yz+zx\right)}\ge\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2+\frac{\left(x+y+z\right)^2}{3}}\)
\(=\frac{\left(x+y+z\right)^2}{\frac{4}{3}\left(x+y+z\right)^2}=\frac{3}{4}\)
Dấu bằng xảy ra khi và chỉ khi x=y=z, Xong! :))
\(\frac{x^2}{y^2}+\frac{y^2}{x^2}+4\ge 3\left(\frac{x}{y}+\frac{y}{x}\right)\) <=>\(\frac{x^2}{y^2}+\frac{y^2}{x^2}+4 - 3\left(\frac{x}{y}+\frac{y}{x}\right)\ge0\)
Vì \(\frac{x^2}{y^2}+\frac{y^2}{x^2}\ge 2\)
và \(\left(\frac{x}{y}+\frac{y}{x}\right)\ge 2\)
nên BĐT tương đương 2+ 4- 3x2 \(\ge 0\)
<=> 0\(\ge 0\)
Dấu = xảy ra khi x=y
Đặt \(\frac{x}{y}+\frac{y}{x}=a\) ta có \(lal=l\frac{x}{y}+\frac{y}{x}l=l\frac{x}{y}l+l\frac{y}{x}l\ge2\) ( cô - si )
=> \(a\ge2ora\le-2\)
BĐT <=> \(a^2-2+4\ge3a\Leftrightarrow a^2-3a+2\ge0\Leftrightarrow\left(a-1\right)\left(a-2\right)\ge0\)
(+) với \(a\ge2\) => \(a-1>a-2\ge0\Leftrightarrow\left(a-1\right)\left(a-2\right)\ge0\)
(+) với \(a\le-2\Rightarrow a-2\le0;a-1\le0\Rightarrow\left(a-2\right)\left(a-1\right)\ge0\)
Vậy BĐT trên luôn đúng
Bđt tương đương:
\(\frac{\left(x^2-y^2\right)^2}{x^2y^2}\ge\frac{3\left(x-y\right)^2}{xy}\)
\(\Leftrightarrow\left(x-y\right)^2\left[\frac{\left(x+y\right)^2-3xy}{x^2y^2}\right]\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\left[\frac{x^2+y^2-xy}{x^2y^2}\right]\ge0\)(luôn đúng do \(x,y\ne0\))
Đặt \(\frac{x}{y}+\frac{y}{x}=a\)
\(\Rightarrow\left(\frac{x}{y}+\frac{y}{x}\right)^2=a^2\)
\(\Rightarrow\frac{x^2}{y^2}+\frac{y^2}{x^2}+2=a^2\)
Dễ dàng chứng minh được: \(\frac{x^2}{y^2}+\frac{y^2}{x^2}\ge2\)nên \(a^2\ge4\)\(\Rightarrow\orbr{\begin{cases}x\ge2\\x\le-2\end{cases}}\left(1\right)\)
Ta thấy: bđt tương đương với \(a^2-2+4\ge3a\Leftrightarrow a^2-3a+2\ge0\)
\(\Leftrightarrow\left(a-1\right)\left(a-2\right)\ge0\)
\(\Leftrightarrow\orbr{\begin{cases}a\ge2\\a\le1\end{cases}}\left(2\right)\)
Từ (1) suy ra (2) . Vậy bài toán được chứng minh
ai có nick bang bang ko cho tui chơi với