K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 11 2016

Ai giúp mình với

Nhanh đi mà

Năn nỉ mà

Hu hu

Mình cần gấp lắm 

5 tháng 8 2019

a, Ta có: \(\frac{a}{b}=\frac{c}{d}=k\left(k\ne0\right)\Rightarrow a=kb;c=kd\)

Thay:

\(\frac{ab}{cd}=\frac{b^2}{d^2}\)

\(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{b^2\left(k+1\right)^2}{d^2\left(k+1\right)^2}=\frac{b^2}{d^2}\)

=> đpcm

17 tháng 10 2016

Vì \(\frac{a}{b}=\frac{c}{d}\) nên ad=bc và \(\frac{a}{c}=\frac{b}{d}=\frac{ab}{cd}\)(1)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có: \(\frac{a}{b}=\frac{c}{d}=\frac{a+b}{c+d}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)(2)

Từ (1) và (2), ta suy ra: \(\frac{ab}{cd}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)

7 tháng 6 2016

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk,c=dk\)

Ta có :

\(\frac{a\times b}{c\times d}=\frac{bk\times b}{dk\times d}=\frac{b^2\times k}{d^2\times k}=\frac{b^2}{d^2}\left(1\right)\)

\(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{\left(bk+b\right)^2}{\left(dk+d\right)^2}=\frac{\left(b\times\left(k+1\right)\right)^2}{\left(d\times\left(k+1\right)\right)^2}=\frac{b^2\times\left(k+1\right)^2}{d^{2\times}\left(k+1\right)^2}=\frac{b^2}{d^2}\left(2\right)\)

Từ (1) và (2) , ta có :\(\frac{a\times b}{c\times d}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)

4 tháng 6 2017

Ta có : \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

Nên \(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\)

Suy ra : \(\frac{a.b}{c.d}=\frac{\left(a+b\right)\left(a+b\right)}{\left(c+d\right)\left(c+d\right)}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)

Vậy \(\frac{a.b}{c.d}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\left(\text{đ}pcm\right)\)

5 tháng 1 2018

\(\frac{a}{b}=\frac{c}{d}\)\(\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\)

\(\Rightarrow\frac{a}{c}.\frac{b}{d}=\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}=\frac{a^2+b^2}{c^2+d^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)

\(\Rightarrow\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)và \(\frac{a^2+b^2}{c^2+d^2}=\left(\frac{a+b}{c+d}\right)^2\)

21 tháng 11 2016

Giải:
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow a=bk,c=dk\)

Ta có: \(\frac{a.b}{c.d}=\frac{bkb}{dkd}=\frac{b^2}{d^2}\) (1)

\(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{\left(bk+b\right)^2}{\left(dk+d\right)^2}=\frac{\left[b\left(k+1\right)\right]^2}{\left[d\left(k+1\right)\right]^2}=\frac{b^2}{d^2}\) (2)

\(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(bk\right)^2+b^2}{\left(dk\right)^2+d^2}=\frac{b^2.k^2+b^2}{d^2.k^2+d^2}=\frac{b^2.\left(k^2+1\right)}{d^2.\left(k^2+1\right)}=\frac{b^2}{d^2}\) (3)

Từ (1), (2) và (3) suy ra \(\frac{a.b}{c.d}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{a^2+b^2}{c^2+d^2}\)

21 tháng 11 2016

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\begin{cases}a=bk\\c=dk\end{cases}\)

ta có: \(\frac{a.b}{c.d}=\frac{b^2.k}{d^2.k}=\frac{b^2}{d^2}\left(1\right)\)

\(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{a^2+2ab+b^2}{c^2+2cd+d^2}=\frac{b^2.k^2+2b^2.k+b^2}{d^2.k^2+2d^2.k+d^2}=\frac{b^2}{d^2}\left(2\right)\)

\(\frac{a^2+b^2}{c^2+d^2}=\frac{b^2.k^2+b^2}{d^2.k^2+d^2}=\frac{b^2}{d^2}\left(3\right)\)

từ 1,2 và 3 ta có điều phải chứng minh

28 tháng 9 2016

a) Do \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

\(\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a.b}{c.d}\left(1\right)\) 

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}\left(2\right)\)

Từ (1) và (2) => \(\frac{a.b}{c.d}=\frac{a^2-b^2}{c^2-d^2}\left(đpcm\right)\)

b) Do \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

\(\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}\)

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\begin{cases}\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\\\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\end{cases}\)\(\Rightarrow\begin{cases}\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\\\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\end{cases}\)

\(\Rightarrow\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\left(đpcm\right)\)