K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2017

a,Ta có:

\(VT=\left(xy\right)^n=xy.xy.xy.....xy\)(có n số xy)

\(=x^ny^n=VP\)

Vậy \(\left(x.y\right)^n=x^ny^n\)

b, Ta có:
\(VT=\left(\dfrac{x}{y}\right)^n=\dfrac{x}{y}.\dfrac{x}{y}.\dfrac{x}{y}.....\dfrac{x}{y}\)(có n số \(\dfrac{x}{y}\))

\(=\dfrac{x.x.x.....x}{y.y.y.....y}=\dfrac{x^n}{y^n}=VP\)

Vậy \(\left(\dfrac{x}{y}\right)^n=\dfrac{x^n}{y^n}\)

Chúc bạn học tốt!!!

20 tháng 7 2017

VT là j vậy p

20 tháng 7 2017

Ta có: \(\left(xy\right)^n=\left(xy\right)\left(xy\right)...\left(xy\right)=\left(x.x...x\right)\left(y.y...y\right)=x^ny^n\)(với n thừa số xy, n thừa số x, n thừa số y) (đpcm)

\(\left(\frac{x}{y}\right)^n=\left(\frac{x}{y}\right)\left(\frac{x}{y}\right)...\left(\frac{x}{y}\right)=\frac{x.x...x}{y.y...y}=\frac{x^n}{y^n}\)(với n thừa số \(\frac{x}{y}\), n thừa số x, n thừa số y) (đpcm)

7 tháng 1 2019

Hình như hơi sai đề

7 tháng 1 2019

ko đúng đấy chứ

mình nhầm :

2) Vì /2x-3y/2015 lớn h+n hoặc bằng 0

và (x+y+x)2014 lớn hơn hoặc bằng 0 (với mọi x , y )

Mà /2x-3y/2015+ (x+y+z)2014 = 0

=) x+y+z = 0 (1)

=)2x- 3y = 0

=) x+y+x =0

=) 2(x+y+x)=0

=) 2x + 2y + 2x = 0

=) 3y+2y+3y = 0

=) 7y=0 =)y=0

thay y =0 vào (1)

=) ta có : x+y+x=0

=)x+0+x = 0

=) 2x=0 =) x=0

Vậy (x,y) = (0,0)

25 tháng 7 2017

143. a) \(-6x^n.y^n.\left(-\dfrac{1}{18}x^{2-n}+\dfrac{1}{72}y^{5-n}\right)\)

\(=-6.\left(-\dfrac{1}{18}\right)x^n.x^{2-n}.y^n+\left(-6\right).\dfrac{1}{27}x^n.y^n.y^{5-n}\)

\(=\dfrac{1}{3}x^{n+2-n}y^n-\dfrac{2}{9}x^n.y^{n+5-n}\)

\(=\dfrac{1}{3}x^2y^n-\dfrac{2}{9}x^ny^5\)

b) Ta có: \(\left(5x^2-2y^2-2xy\right)\left(-xy-x^2+7y^2\right)\)

\(=5x^2\left(-xy\right)+5x^2.\left(-x^2\right)+5x^2.7y^2-2y^2.\left(-xy\right)-2y^2.\left(-x^2\right)-2y^2.7y^2-2xy.\left(-xy\right)-2xy\left(-x^2\right)-2xy.7y^2\)

\(=-5x^3y-5x^4+35x^2y^2+2xy^3+2x^2y^2-14y^4+2x^2y^2+2x^3y-14xy^3\)

Rút gọn các đa thức đồng dạng, ta có kết quả:

\(-5x^4-3x^3y+39x^2y^2-12xy^3-14y^4\)

Kết quả đã được xếp theo lũy thừa giảm dần của x

19 tháng 7 2018

1. \(3^x+3^{x+2}=2430\)

    \(3^x\left(1+3^2\right)=2430\)

    \(3^x.10=2430\)

    \(3^x=243\)

    \(3^x=3^5\)

    \(x=5\)

2. \(2^{x+3}-2^x=224\)

    \(2^x\left(2^3-1\right)=224\)

    \(2^x.7=224\)

    \(2^x=32\)

    \(2^x=2^5\)

    \(x=5\)

19 tháng 7 2018

1. 3^x + 3^x+2 = 2430

3^x.1+3^x.3^2=2430

3^x.1+3^x.9=2430

3^x.(1+9)=2430

3^x.10=2430

3^x=2430:10

3^x=243

3^x=3^5

=> x=5

Vậy x =5

2. 2^x+3  - 2^x =224

2^x.2^3-2^x.1=224

2^x.8-2^x.1=224

2^x.(8-1)=224

2^x.7=224

2^x=224:7

2^x=32

2^x=2^5

=> x=5

Vậy x=5

AH
Akai Haruma
Giáo viên
31 tháng 12 2018

Lời giải:

\(\frac{x+y}{y+z}=\frac{y+z}{z+t}=\frac{z+t}{t+x}=\frac{t+x}{x+y}\)

\(\Rightarrow (\frac{x+y}{y+z})^4=(\frac{y+z}{z+t})^4=(\frac{z+t}{t+x})^4=(\frac{t+x}{x+y})^4=\frac{x+y}{y+z}.\frac{y+z}{z+t}.\frac{z+t}{t+x}.\frac{t+x}{x+y}=1\)

\(\Rightarrow \left[\begin{matrix} \frac{x+y}{y+z}=\frac{y+z}{z+t}=\frac{z+t}{t+x}=\frac{t+x}{x+y}=1\\ \frac{x+y}{y+z}=\frac{y+z}{z+t}=\frac{z+t}{t+x}=\frac{t+x}{x+y}=-1\end{matrix}\right.\)

\(\Rightarrow \left[\begin{matrix} x=y=z=t\\ x+y+z+t=0\end{matrix}\right.\)

Nếu $x=y=z=t$ thì:

\(A=\left(\frac{y+z}{x+t}\right)^{2013}+\left(\frac{y+t}{x+y}\right)^{2014}=\left(\frac{x+x}{x+x}\right)^{2013}+\left(\frac{x+x}{x+x}\right)^{2014}=1+1=2\in\mathbb{Z}\)

Nếu $x+y+z+t=0$ thì:

\(y+z=-(x+t); y+t=-(x+y)\)

\(\Rightarrow A=(-1)^{2013}+(-1)^{2014}=(-1)+1=0\in\mathbb{Z}\)

Vậy biểu thức $A$ luôn có giá trị nguyên.

29 tháng 10 2021

câu 1: d
câu 2: b

29 tháng 10 2021

Câu 1:D

vì |x|=x mà x > -x
Câu 2:B

vì theo công thức thì (am)n=am.n

2 tháng 1 2023

Ta có: \(\dfrac{y-z}{\left(x-y\right)\left(x-z\right)}=\dfrac{y-x+x-z}{\left(x-y\right)\left(x-z\right)}\)\(=\dfrac{y-x}{\left(x-y\right)\left(x-z\right)}+\dfrac{x-z}{\left(x-y\right)\left(x-z\right)}\) \(=\dfrac{1}{z-x}+\dfrac{1}{x-y}\)

Tương tự:

\(\dfrac{z-x}{\left(y-z\right)\left(y-x\right)}=\dfrac{1}{x-y}+\dfrac{1}{y-z}\)

\(\dfrac{x-y}{\left(z-x\right)\left(z-y\right)}=\dfrac{1}{y-z}+\dfrac{1}{z-x}\)

\(\Rightarrow\dfrac{y-z}{\left(x-y\right)\left(x-z\right)}+\dfrac{z-x}{\left(y-z\right)\left(y-x\right)}+\dfrac{x-y}{\left(z-x\right)\left(z-y\right)}\) \(=\dfrac{2}{x-y}+\dfrac{2}{y-z}+\dfrac{2}{z-x}\) \(\left(đpcm\right)\)