Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(A=\frac{3}{2}+\frac{1}{2}\left[\cos2x+\cos\left(\frac{2\pi}{3}+2x\right)+\cos\left(\frac{4\pi}{3}+2x\right)\right]\)
\(=\frac{3}{2}+\frac{1}{2}\left[\cos2x+2\cos\left(\pi+2x\right).\cos\left(-\frac{\pi}{3}\right)\right]=\frac{3}{2}+\frac{1}{2}\left[\cos2x+\cos2x\right]=\frac{3}{2}\)
1) Có \(u_{n+1}-u_n=\dfrac{1}{2}u^2_n-2u_n+2=\dfrac{1}{2}\left(u_n-2\right)^2\) (1)
+) CM \(u_n>2\) (n thuộc N*)
n=1 : u1= 5/2 > 2 (đúng)
Giả sử n=k, uk > 2 (k thuộc N*)
Ta cần CM n = k + 1. Thật vậy ta có:
\(u_{k+1}=\dfrac{1}{2}u^2_k-u_k+2=\dfrac{1}{2}\left(u_k-2\right)^2+u_k\) (đúng)
Vậy un > 2 (n thuộc N*) (2)
Từ (1) (2) => un+1 - un > 0, hay un+1 > un
=> (un) là dãy tăng => \(\lim\limits_{n\rightarrow\infty}u_n=+\infty\)
2) \(2u_{n+1}=u^2_n-2u_n+4\)
\(\Leftrightarrow2u_{n+1}-4=u^2_n-2u_n\)
\(\Leftrightarrow2\left(u_{n+1}-2\right)=u_n\left(u_n-2\right)\)
\(\Leftrightarrow\dfrac{1}{u_{n+1}-2}=\dfrac{2}{u_n\left(u_n-2\right)}=\dfrac{1}{u_n-2}-\dfrac{1}{u_n}\)
\(\Leftrightarrow\dfrac{1}{u_n}=\dfrac{1}{u_n-2}-\dfrac{1}{u_{n+1}-2}\)
\(S=\dfrac{1}{u_1}+\dfrac{1}{u_2}+...+\dfrac{1}{u_n}\)
\(=\dfrac{1}{u_1-2}-\dfrac{1}{u_2-2}+\dfrac{1}{u_2-2}+...-\dfrac{1}{u_{n+1}-2}\)
\(=\dfrac{1}{u_1-2}-\dfrac{1}{u_{n+1}-2}\)
\(=2-\dfrac{1}{u_{n+1}-2}\)
\(\Leftrightarrow\lim\limits_{n\rightarrow\infty}S=2\)
\(\left|\frac{-\sqrt{2}}{\pi}\right|< 1\Rightarrow lim\left(\frac{-\sqrt{2}}{\pi}\right)^n=0\)
Quy tắc giới hạn mà bạn
\(lima^n=0\) với \(\left|a\right|< 1\)
\(f'\left(x\right)=4sin\left(3x-\dfrac{\pi}{4}\right)\cdot\left[sin\left(3x-\dfrac{\pi}{4}\right)\right]'\\ =4\left(3x-\dfrac{\pi}{4}\right)'cos\left(3x-\dfrac{\pi}{4}\right)sin\left(3x-\dfrac{\pi}{4}\right)\\ =6sin\left(6x-\dfrac{\pi}{2}\right)\)
Vì \(-1\le sin\left(6x-\dfrac{\pi}{2}\right)\le1\Rightarrow-6\le6sin\left(6x-\dfrac{\pi}{2}\right)\le6\Leftrightarrow-6\le f'\left(x\right)\le6\)
Vậy \(\left|f'\left(x\right)\right|\le6\forall x\)
Ta có \(f'\left( x \right) = 2.2\sin \left( {x + \frac{\pi }{4}} \right).{\left[ {\sin \left( {x + \frac{\pi }{4}} \right)} \right]^,} = 4\sin \left( {x + \frac{\pi }{4}} \right)\cos \left( {x + \frac{\pi }{4}} \right) = 2\sin \left( {2x + \frac{\pi }{2}} \right)\)
\( \Rightarrow f''\left( x \right) = 2.2\cos \left( {2x + \frac{\pi }{2}} \right) = 4\cos \left( {2x + \frac{\pi }{2}} \right)\)
Mặt khác \( - 1 \le \cos \left( {2x + \frac{\pi }{2}} \right) \le 1 \Leftrightarrow - 4 \le f''\left( x \right) \le 4\)
Vậy \(\left| {f''\left( x \right)} \right| \le 4\) với mọi x.
Bài 1:
\(\lim\limits _{x\to 1}\frac{4x^6-5x^5+x}{(1-x)^2}=\lim\limits _{x\to 1}\frac{x(x-1)^2(4x^3+3x^2+2x+1)}{(1-x)^2}\)
\(=\lim\limits _{x\to 1}x(4x^3+3x^2+2x+1)=1(4.1^3+3.1^2+2.1+1)=10\)
Bài 3:
\(\lim\limits _{x\to +\infty}[\sqrt{9x^2-4x+3}-(ax+b)]=0\)
\(\Rightarrow \lim\limits _{x\to +\infty}\frac{\sqrt{9x^2-4x+3}-(ax+b)}{x}=0\)
\(\Leftrightarrow \lim\limits _{x\to +\infty}\left(\sqrt{9-\frac{4}{x}+\frac{3}{x^2}}-a+\frac{b}{x}\right)=0\)
\(\Leftrightarrow a=3\)
Thay $a=3$ vào đk ban đầu:
\(\lim\limits _{x\to +\infty}[\sqrt{9x^2-4x+3}-3x-b]=0\)
\(\Leftrightarrow \lim\limits _{x\to +\infty} (\sqrt{9x^2-4x+3}-3x)=b\)
\(\Leftrightarrow \lim\limits _{x\to +\infty}\frac{-4x+3}{\sqrt{9x^2-4x+3}+3x}=b\)
\(\Leftrightarrow \lim\limits _{x\to +\infty}\frac{-4+\frac{3}{x}}{\sqrt{9-\frac{4}{x}+\frac{3}{x}}+3}=b\)
\(\Leftrightarrow \frac{-4}{6}=b\Leftrightarrow b=-\frac{2}{3}\)
Câu 4.
\(\lim \left( {{n^2}\sin \dfrac{{n\pi }}{5} - 2{n^3}} \right) = \lim {n^3}\left( {\dfrac{{\sin \dfrac{{n\pi }}{5}}}{n} - 2} \right) = - \infty \)
Vì \(\lim {n^3} = + \infty ;\lim \left( {\dfrac{{\sin \dfrac{{n\pi }}{5}}}{n} - 2} \right) = - 2 \)
\(\left| {\dfrac{{\sin \dfrac{{n\pi }}{5}}}{n}} \right| \le \dfrac{1}{n};\lim \dfrac{1}{n} = 0 \Rightarrow \lim \left( {\dfrac{{\sin \dfrac{{n\pi }}{5}}}{n} - 2} \right) = - 2\)
Câu 5.
Ta có: \(\left\{ \begin{array}{l} 0 \le \left| {{u_n}} \right| \le \dfrac{1}{{{n^2} + 1}} \le \dfrac{1}{n} \to 0\\ 0 \le \left| {{v_n}} \right| \le \dfrac{1}{{{n^2} + 2}} \le \dfrac{1}{n} \to 0 \end{array} \right. \to \lim {u_n} = \lim {v_n} = 0 \to \lim \left( {{u_n} + {v_n}} \right) = 0\)
Vì \(\left| {\frac{e}{\pi }} \right| < 1\) nên theo định nghĩa dãy số có giới hạn 0 ta có \(\lim {\left( {\frac{e}{\pi }} \right)^n} = 0.\)