K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 2 2018

\(M=4x\left(x+y+z\right)\left(x^2+xz+yx+yz\right)+\left(yz\right)^2\)

\(M=4\left(x^2+xy+zx\right)\left(x^2+yz+zx+xy\right)+\left(yz\right)^2\)

\(M=4\left(x^2+xy+zx\right)\left\{\left(x^2+yz+zx\right)+xy\right\}+\left(yz^2\right)\)

\(M=4\left(x^2+xy+zx\right)^2+4\left(x^2+yz+zx\right)\left(yz\right)+\left(yz\right)^2\) ( hằng đẳng thức )

\(M=\left\{2\left(x^2+xy+zx\right)\right\}^2+2.2\left(x^2+xy+zx\right)\left(yz\right)+\left(yz\right)^2\)

\(M=\left(2\left(x^2+xy+zx\right)+\left(yz\right)\right)^2\)

\(M=\left(2x^2+2xy+zx+yz\right)^2\)

10 tháng 2 2018

\(M=4x\left(x+y\right)\left(x+y+z\right)\left(x+z\right)+y^2z^2\)

\(=2x\left(x+y+z\right)2\left(x+y\right)\left(x+z\right)+y^2z^2\)

\(=\left(2x^2+2xy+2xz\right)\left(2x^2+2xy+2xz+2yz\right)+y^2z^2\)

Đặt \(2x^2+2xy+2xz+yz=a\)

\(M=\left(a-yz\right)\left(a+yz\right)+y^2z^2\)

\(=a^2-y^2z^2+y^2z^2\)

\(=a^2\)

Mà \(x;y;z\in N\Rightarrow a\in N\)

=> M là số chính phương

26 tháng 2 2017

Bạn tính toán cuối cùng nó ra M=(yz+2xz+2xy+2x2)2

x;y;z là các số tự nhiên => M là số chính phương

27 tháng 2 2017

Cảm ơn

13 tháng 8 2017

\(C=4x\left(x+y\right)\left(x+y+z\right)\left(x+z\right)+y^2z^2\)

\(=4x\left(x+y+z\right)\left(x+y\right)\left(x+z\right)+y^2z^2\)

\(=4\left(x^2+xy+xz\right)\left(x^2+xy+xz+yz\right)+y^2z^2\left(1\right)\)

Đặt \(a=x^2+xy+xz\)và \(b=yz\)ta có:

\(\left(1\right)\Rightarrow C=4a\left(a+b\right)+b^2=b^2+4ab+4a^2=\left(b+2a\right)^2\)

Vậy C là một số chính phương.

Đặt \(A=\frac{1}{\left(x-y\right)^2}+\frac{1}{\left(y-z\right)^2}+\frac{1}{\left(z-x\right)^2}\)

\(=\frac{\left(y-z\right)^2\left(z-x\right)^2+\left(x-y\right)^2\left(z-x\right)^2+\left(x-y\right)^2\left(y-z\right)^2}{\left(x-y\right)^2\left(y-z\right)^2\left(z-x\right)^2}\)

Xét B=(y-z)2(z-x)2+(x-y)2(z-x)2+(x-y)2(y-z)2

Đặt a=(y-z)(z-x), b=(x-y)(z-x), c=(x-y)(y-z)

Ta có:B=a2+b2+c2=(a+b+c)2-2(ab+bc+ca)

=(a+b+c)2-2((x-y)(y-z)(z-x)(z-x + x-y + y-z)

=(a+b+c)2-0=(a+b+c)2

=[(y-z)(z-x)+(x-y)(z-x)+(x-y)(y-z)]2

\(\Rightarrow A=\frac{\text{[x-y)(z-x)+(x-y)(z-x)+(x-y)(y-z)]^2}}{\text{[(x-y)(y-z)(z-x)]^2}}\)

=> A là bình phương 1 số hữu tỉ

9 tháng 11 2015

\(M=4x\left(x+y\right)\left(x+y+z\right)\left(x+z\right)+y^2z^2=4\left(x^2+xy+xz\right)\left(x^2+xy+xz+yz\right)+y^2z^2\)

Đặt \(x^2+xy+xz=a\) , ta có:

\(M=4a\left(a+yz\right)+y^2z^2=4a^2+4ayz+y^2z^2=\left(2a+yz\right)^2\)

\(M=\left(2x^2+2xy+2xz+yz\right)^2\)là số chính phương với \(x;y;z\in N\)

24 tháng 8 2016

abcdacscas

15 tháng 10 2017

Hỏi đáp Toán

30 tháng 10 2021

B3 : t chỉ m r á :3
B4 : 
Ta có :
C= 4x ( x + y ) ( x + y + z ) ( y + z ) + y2x2
   = 4x ( x + y + z ) ( x + y ) ( x + z ) + y2x2
   = 4 ( x2 + xy + xz ) ( x+ xy + xz + yz ) + y2x2
Đặt a = x+ xy + xz và b= yz , ta có :
  ⇒ C = 4a( a + b ) + b2
          = b2 + 4ab + 4a2
          = ( b + a )2
  ⇒ C là số chính phương 
Chúc mừng m đã ghi xong bài , nhớ tick cho t nhoa bff!yeu