K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

chịuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

31 tháng 1 2016

1,Ta có:4(2a+3b)+(9a+5b)

=8a+12b+9a+5b

=17a+17b chia hết cho 17

Vì (2a+3b) chia hết cho 17

=>4(2a+3b) chia hết cho 17

=>9a+5b chia hết cho 17

=>đpcm

5 tháng 1 2020

a)

Đặt tích 3 số tự nhiên liên tiếp là T = a. (a + 1). (a + 2)

- Chứng minh T chia hết cho 2: Chỉ có 2 trường hợp

+ Nếu a chia hết cho 2 (a chẵn)

=> T chia hết cho 2.

+ Nếu a chia 2 dư 1 (a lẻ)

=> a + 1 chia hết cho 2

=> T chia hết cho 2.

- Chứng minh T chia hết cho 3: Có 3 trường hợp

+ Nếu a chia hết cho 3

=> T chia hết cho 3.

+ Nếu a chia 3 dư 1

=> a + 2 chia hết cho 3

=> T chia hết cho 3.

+ Nếu a chia 3 dư 2

=> a + 1 chia hết cho 3

=> T chia hết cho 3.

Mà 2 và 3 nguyên tố cùng nhau

=> T chia hết cho 2.3 = 6 (đpcm).

Vậy tích của 3 số tự nhiên liên tiếp thì chia hết cho 6.

Chúc bạn học tốt!

5 tháng 1 2020

a) Gọi n, n+1, n+2 là 3 số tự nhiên liên tiếp

Ta có A=n*(n+1)*(n+2)

- Chứng minh A chia hết cho 2:

+ Nếu n chẵn => n chia hết cho 2 => A chia hết cho 2

+ Nếu n lẻ => n+1 chia hết cho 2 => A chia hết cho 2

- Chứng minh A chia hết cho 3:

+ Nếu n chia hết cho 3 => A chia hết cho 3

+ Nếu n chia 3 dư 1=> n+2 chia hết cho 3 => A chia hết cho 3

+ Nếu n chia 3 dư 2 => n+1 chia hết cho 3 => A chia hết cho 3

Mà (2,3) =1

=> A chia hết cho 2*3 = 6 ( thỏa mãn )

Vậy tích 3 số tự nhiên liên tiếp chia hết cho 6

Chúc bạn học có hiệu quả!

18 tháng 3 2020

\(2a+3b⋮17\Leftrightarrow2a+3b+17\left(2a+b\right)⋮17\Leftrightarrow36a+20b=4\left(9a+5b\right)⋮17\)

\(\text{mà 17 và 4 là 2 số nguyên tố cùng nhau nên:}9a+5b⋮17\)

\(\text{vậy:}2a+3b⋮17\Leftrightarrow9a+5b⋮17\)

\(2a+3b⋮17\Rightarrow8a+12b⋮17\)

\(\Rightarrow8a+9b+9a+5b\)

\(=17a+17b=17\left(a+b\right)⋮17\)

mà \(8a+12b⋮17\Rightarrow9a+5b⋮17\)

và ngược lại nếu \(9a+5b⋮17\Leftrightarrow2a+3b⋮17\)

26 tháng 2 2016

nhân 2a-5b+6c với 9 rồi trừ đi a-11b+3c

7 tháng 8 2020

Ta có \(a-11b+3c⋮17\Rightarrow2a-22b+6c⋮17\)

Ta có \(17b⋮17\)

Nên \(2a-22b+6c+17b=2a-5b+6c⋮17\left(dpcm\right)\)

27 tháng 3 2021

1duocgoitienganhla

Ta có:\(\left(2a-5b+6c\right)+15\left(a-11b+3c\right)=17a-170b+51c⋮17\)

Mà \(15\left(a-11b+3c\right)⋮17\Rightarrow2a-5b+6c⋮17\left(đpcm\right)\)