Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phùng Gia Bảo câu b xem người ta giải trong câu hỏi tương tự chứ j
abc + bca + cab
= 100a + 10b + c + 100b + 10c + a + 100c + 10a + b
= (100a + a + 10a) + (10b + 100b + b) + (c + 10c + 100c)
= 111a + 111b + 111c
= 111(a + b + c)
= 37.3(a + b + c) \(⋮\) 37 (đpcm)
ta có:abc+bca+cab=111.a
Vi 111 chia het cho 7 nen abc+bac+cab
k đ nha
Ta có :
Nếu \(\overline{abc}\)chia hết cho 37 thì 100a + 10b + c chia hết cho 37
→ 1000a + 100b + 10c chia hết cho 37
→ 1000a - 999a + 100b + 10c chia hết cho 7
→ 100b + 10c + a chia hết cho 7 ( bca chia hết cho 7 )
Nếu \(\overline{bca}\)chia hết cho 7 thì ............
Bạn làm tương tự như trên nhé
????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????
Ta có : A = abcdeg - (abc+deg)
= abc.1000 + deg - abc - deg
= abc.999
= abc.27.37
=> A chia hết cho 37
Vì abc + deg chia hết cho 37 mà A chia hết cho 37 nên abcdeg chia hết cho 37
\(\overline{abc}+\overline{deg}⋮37\)
\(\overline{abcdeg}=1000\cdot\overline{abc}+deg\)
\(\Rightarrow999\cdot\overline{abc}+\overline{abc}+\overline{deg}\)
\(\Rightarrow\left(\overline{abc}\cdot27\cdot37\right)+\overline{abc}+\overline{deg}\)
Do \(\overline{abc\cdot37\cdot27⋮37}\)nên \(\overline{abcdeg}⋮37\)
\(\overline{abcd}=100\overline{ab}+\overline{cd}=200\overline{cd}+\overline{cd}=201\overline{cd}=3.67.\overline{cd}⋮67\)
Câu 2 bạn ghi sai đề rồi nhé.
Ví dụ \(135⋮27\)nhưng \(315⋮̸27\).
Sửa: Cho số \(\overline{abc}\)chia hét cho \(27\). Chứng minh rằng \(\overline{cab}\)cũng chia hết cho \(27\).
Ta có: \(\overline{abc}=100a+10b+c⋮7\Leftrightarrow10000a+1000b+100c⋮27\)
\(\Leftrightarrow10000-370.27a+1000b-37.27b+100c⋮27\)
\(\Leftrightarrow100c+10a+b=\overline{cab}⋮27\).
kkk, thế này mà cũng hỏi:
abc là một tích, các thừa số có thể đổi vị trí nhưng vẫn ra 1 kết quả
=> abc,bac,cab đều chia hết cho 37
abc là 1 số mà bạn ơi