Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dấu "=" ko xảy ra ??? xem lại đề
Theo bđt tam giác ta có :
\(a< b+c\)\(\Leftrightarrow\)\(a^2< ab+ac\)
\(b< c+a\)\(\Leftrightarrow\)\(b^2< bc+ab\)
\(c< a+b\)\(\Leftrightarrow\)\(c^2< ac+bc\)
Cộng theo vế từng bđt trên ta có :
\(a^2+b^2+c^2< ab+ac+bc+ab+ac+bc=2\left(ab+bc+ca\right)\) ( đpcm )
Chúc bạn học tốt ~
do a,b là 3 cạnh của tam giác vuông mà c là cạnh huyền=>\(c^2=a^2+b^2\)
nhân 2 vế với 2 ta đc ab+bc+ca<=2c^2 (2)
<=>ab+bc+ca<=a^2+b^2+c^2
<=>a^2+b^2+c^2-ab-bc-ca>=0
<=>(a-b)^2+(b-c)^2+(c-a)^2>=0 (1)
(1)đúng =>2 đúng
Cauchy ở mẫu \(a^2+bc\ge2a\sqrt{bc}\)
Vậy vế trái \(\le\frac{1}{2a\sqrt{bc}}+\frac{1}{2b\sqrt{ca}}+\frac{1}{2c\sqrt{ab}}=\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2abc}\)
Và lượng trên tử bé hơn bằng \(ab+bc+ca\)