Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi AD và A’D' lần lượt là hai đường phân giác của ΔABC và ΔA'B'C'.
+) Lại có; AD, A’D’ lần lượt là phân giác của góc A và góc A’ nên:
Gọi AD và A’D' lần lượt là hai đường phân giác của ΔABC và ΔA'B'C'.
+) Lại có; AD, A’D’ lần lượt là phân giác của góc A và góc A’ nên:
Gọi AD và A’D' lần lượt là hai đường phân giác của ΔABC và ΔA'B'C'.
+) Lại có; AD, A’D’ lần lượt là phân giác của góc A và góc A’ nên:
( Bạn tự kẻ hình nhé!!! )
Gọi AD và A’D' lần lượt là hai đường phân giác của ΔABC và ΔA'B'C'
Tam giác A'B'C' đồng dạng với tam giác ABC theo tỉ số k nên:
\(\widehat{B'}=\widehat{B}\), \(\widehat{A'}=\widehat{A}\), \(\frac{A'B'}{AB}=k\)
Lại có; AD, A’D’ lần lượt là phân giác của góc A và góc A’ nên:
\(\widehat{B'A'D'}=\frac{1}{2}\widehat{B'A'C'}\), \(\widehat{BAD}=\frac{1}{2}\widehat{BAC}\)
\(\Rightarrow\widehat{B'A'D'}=\widehat{BAD}\)
Xét tam giác A'B'D' và tam giác ABD:
\(\widehat{B'}=\widehat{B}\)
\(\widehat{B'A'D'}=\widehat{BAD}\)
\(\Rightarrow\)tam giác A'B'D' đồng dạng với tam giác ABD
\(\Rightarrow\frac{A'D'}{AD}=\frac{A'B'}{AB}=k\)
a) BE // DC => ∆BEF ∽ ∆CDF
AD // BF => ∆ADE ∽ ∆BFE.
Do đó: ∆ADE ∽ ∆CFD
b) BE = AB - AE = 12 - 8 = 4cm
∆ADE ∽ ∆BFE => \(\dfrac{AE}{BE}=\dfrac{AD}{BF}=\dfrac{DE}{FD}\)
=> \(\dfrac{8}{4}=\dfrac{7}{BF}=\dfrac{10}{EF}\)
=> BF = 3,5 cm.
EF = 5 cm.
Vì mình chưa đc làm CTV nên kh đăng ảnh lên được , bạn thông cảm :
Bạn vào thống kê hỏi đáp mình là có ảnh nhé
Tham khảo thêm : https://lazi.vn/edu/exercise/406693/chung-minh-rang-neu-tam-giac-abc-dong-dang-voi-tam-giac-abc-theo-ti-so-k-thi-ti-so-cua-hai-duong-trung-tuyen-tuong-ung-cua-hai-tam
https://lazi.vn/edu/exercise/406693/chung-minh-rang-neu-tam-giac-abc-dong-dang-voi-tam-giac-abc-theo-ti-so-k-thi-ti-so-cua-hai-duong-trung-tuyen-tuong-ung-cua-hai-tam
Tham Khảo link trên nha bn
Giả sử ΔA’B’C’ ΔABC theo tỉ số k
Gọi D, D’ lần lượt là trung điểm BC và B’C’
⇒ ΔA’B’D’ ΔABD theo tỉ số k.