K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2018

Chứng minh rằng phương trình sau có ít nhất hai nghiệm : 

Đề thi Học kì 2 Toán 11 có đáp án (Đề 2)

- Xét hàm số: f ( x ) = 2 x 3 - 5 x 2 + x + 1  là hàm đa thức.

⇒ Hàm số f liên tục trên R.

- Ta có:

Đề thi Học kì 2 Toán 11 có đáp án (Đề 2) có ít nhất một nghiệm c1 ∈ (0;1).

Đề thi Học kì 2 Toán 11 có đáp án (Đề 2) có ít nhất một nghiệm c2 ∈ (2;3).

- Mà c   ≠   c 2  nên PT f(x) = 0 có ít nhất 2 nghiệm.

NV
9 tháng 3 2023

Đặt \(f\left(x\right)=\left(m^2-m+1\right)x^4-3x^3-1\)

\(f\left(x\right)\) là hàm đa thức nên liên tục trên mọi khoảng trên R

\(f\left(0\right)=-1< 0\)

\(f\left(3\right)=81\left(m^2-m+1\right)-55=81\left(m-\dfrac{1}{2}\right)^2+\dfrac{23}{4}>0\)

\(\Rightarrow f\left(0\right).f\left(3\right)< 0\Rightarrow\) pt có ít nhất 1 nghiệm thuộc \(\left(0;3\right)\)

\(f\left(-1\right)=m^2-m+2=\left(m-\dfrac{1}{2}\right)^2+\dfrac{7}{4}>0\)

\(\Rightarrow f\left(-1\right).f\left(0\right)< 0\Rightarrow\) pt có ít nhất 1 nghiệm thuộc \(\left(-1;0\right)\)

\(\Rightarrow\) Pt có ít nhất 2 nghiệm thuộc \(\left(-1;3\right)\Rightarrow\) có ít nhất 2 nghiệm trên \(\left(-5;5\right)\)

28 tháng 2 2022

same e :v

NV
1 tháng 3 2022

Đặt \(f\left(x\right)=x^4-\left(3m-2\right)x^3+mx-1\)

Hiển nhiên \(f\left(x\right)\) liên tục và xác định trên R

\(f\left(0\right)=-1< 0\)

\(\lim\limits_{x\rightarrow+\infty}f\left(x\right)=\lim\limits_{x\rightarrow+\infty}\left(x^4-\left(3m-2\right)x^3+mx+1\right)=+\infty\) dương

\(\Rightarrow\) Luôn tồn tại 1 số thực \(a>0\) đủ lớn sao cho \(f\left(a\right)>0\)

\(\Rightarrow f\left(0\right).f\left(a\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(0;a\right)\) hay \(\left(0;+\infty\right)\)

\(\lim\limits_{x\rightarrow-\infty}\left(x^4-\left(3m-2\right)x^3+mx-1\right)=+\infty\) dương

\(\Rightarrow\) Luôn tồn tại 1 số thực \(b< 0\) sao cho \(f\left(b\right)>0\)

\(\Rightarrow f\left(0\right),f\left(b\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(-\infty;0\right)\)

Vậy phương trình luôn có ít nhất 2 nghiệm với mọi m

NV
9 tháng 3 2022

Đặt \(f\left(x\right)=x^5+x^2-\left(m^2+2\right)x-1\)

Hàm \(f\left(x\right)\) liên tục trên R

\(f\left(0\right)=-1< 0\)

\(\lim\limits_{x\rightarrow+\infty}f\left(x\right)=\lim\limits_{x\rightarrow+\infty}\left(x^5+x^2-\left(m^2+2\right)x-1\right)\)

\(=\lim\limits_{x\rightarrow+\infty}x^5\left(1+\dfrac{1}{x^3}-\dfrac{m^2+2}{x^4}-\dfrac{1}{x^5}\right)=+\infty.1=+\infty\)

\(\Rightarrow\) Luôn tồn tại \(a>0\) sao cho \(f\left(a\right)>0\Rightarrow f\left(0\right).f\left(a\right)< 0\Rightarrow\) pt luôn có ít nhất 1 nghiệm thuộc \(\left(0;+\infty\right)\)

\(f\left(-1\right)=m^2+1>0;\forall m\Rightarrow f\left(-1\right).f\left(0\right)< 0\Rightarrow\) pt luôn có ít nhất 1 nghiệm thuộc \(\left(-1;0\right)\)

\(\lim\limits_{x\rightarrow-\infty}\left(x^5+x^2-\left(m^2+2\right)x-1\right)=\lim\limits_{x\rightarrow-\infty}x^5\left(1+\dfrac{1}{x^3}-\dfrac{m^2+2}{x^4}-\dfrac{1}{x^5}\right)=-\infty.1=-\infty\)

\(\Rightarrow\) Luôn tồn tại \(b< 0\) sao cho \(f\left(b\right)< 0\Rightarrow f\left(b\right).f\left(-1\right)< 0\Rightarrow\) pt luôn có ít nhất 1 nghiệm thuộc \(\left(-\infty;-1\right)\)

Vậy pt đã cho luôn có ít nhất 3 nghiệm thực

10 tháng 3 2022

có dấu hiệu nào để mình biết xét từ khoảng nào kh ạ?

NV
19 tháng 3 2022

Đặt \(f\left(x\right)=m\left(x-1\right)^3\left(x^2-4\right)+x^4-3\)

\(f\left(x\right)\) là hàm đa thức nên liên tục trên R

\(f\left(1\right)=-2< 0\)

\(f\left(2\right)=13>0\)

\(\Rightarrow f\left(1\right).f\left(2\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc khoảng (1;2)

\(f\left(-2\right)=13>0\Rightarrow f\left(1\right).f\left(-2\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc khoảng (-2;1)

\(\Rightarrow f\left(x\right)\) luôn có ít nhất 2 nghiệm phân biệt