Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có 0,7×(2003^2003-1997^1997)
= 0,7×((2003^4)^500 ×2003^3-(1997^4)^499 × 1997
= 0,7×( ....1×...7-....1×.....7)
=0,7×......0
=7
Vậy biểu thức đề bài là số tự nhiên
NHỚ K VÀ
- xét dãy số gom 2002 số hạng sau :
2003, 2003.... 2003 , 2003 ... 2003
2002 lan 2003
chia tất cả số hạng của dãy số 2002 có 2002 số dư từ 1 đến 2002[ ko thể có số dư 0 vì các số hạng là số lẻ ]
có 2002 phép chia nên theo nguyên tắc dirichlet phải có ít nhất 2 số có cùng số dư khi chia 2002
giả sử 2 số đó là am và an [m,n N]; 1< = m
voi am = 2003 2003... 2003; an = 2003 2003 ... 2003
ta có :[an- am] chia het cho 2002
hay 2003 2003.... 2003 00 ...00 luon chia het cho 2002
vậy tồn tại có một số dạng 2003 2003 ... 20032003 ..... 200300 ...0 chia het cho 2002
k mk nha
/x-1/+5.(x+2)=5x-8 /x-1/+5x+10=5x-8 /x-1/+5x-5x=-18 /x-1/=-18=>x=-17 /x-1/=18=>x=19
Đó là điều đương nhiên vì
N* là tập số N khác 0
Mà bắt đầu từ 1 ta có thể lấy số đó trừ đi 1 được
CHúng không ra số nguyên âm .
Ví dụ : 2 = 1 + 1
1 cũng = 1 + 0.
Khi chia một số cho 2002 có tất cả 2002 số dư từ 0 đến 2001;
Xét dãy gồm 2003 số: 2003; 20032003; 200320032003, ...;200320032003...(gồm 2003 số 2003). khi chia các số trong dãy trên cho 2002 thì theo N.L Dirichle có ít nhất hai số chia cho 2002 có cùng số dư, nên hiệu của chúng chia hết cho 2002. Gọi hai số đó là 20032003...2003(gồm m số 2003) và 20032003...2003(gồm n số 2003), giả sử m<n, ta có:
20032003...2003(gồm n số 2003) - 20032003...2003(gồm m số 2003) Chia hết cho 2002
hay 20032003...200300...0(gồm n-m số 2003 và m số 0) chia hết cho 2002. Vậy, tốn tại số có dạng 20032003...200300...0 chia hết cho 2002
Ta có:19831983+19171917
=*31983+*71917=(*32)991.*3+(*72)958.*7
=*1991.*3+*1958.*7
=*1.*3+*1.*7
=*3+*7
=*0
=>19831983+19171917 có tận cùng là 0
=>19831983+19171917 chia hết cho 10
=>19831983+19171917=10k(k thuộc N)
=>0,7.19831983+19171917=0,7.10.k=7.k là số tự nhiên
=>ĐPCM
19831983 = (19834)495.19833 = (...1)495.(...7) = (...1).(...7) = (...7)
19171917 = (19174)479.1917 = (....1)479.1917 = (....1).1917 = (...7)
=> 19831983 - 19171917 = (...7) - (..7) = (....0) nên 19831983 - 19171917 chia hết cho 10
=> 0,3.(19831983 - 19171917) = 3.(19831983 - 19171917): 10 là số tự nhiên
Câu a) thôi, câu b) chị chưa nghĩ được!
+) 2 số lẻ liên tiếp có dạng là 2n + 1 và 2n + 3 ( n thuộc N )
+) Đặt d thuộc ƯC ( 2n + 1; 2n + 3 ) ( d thuộc N* )
=> 2n + 1 chia hết cho d
2n + 3 chia hết cho d
Vậy ( 2n + 3 ) - ( 2n + 1 ) chia hết cho d
<=> 2 chia hết cho d
=> d thuộc Ư ( 2 )
=> d thuộc {1; 2}
Nhưng d là số lẻ => d ≠ 2 => d = 1
Vậy 2 số lẻ liên tiếp là 2 số nguyên tố cùng nhau.
+) 1968 chia hết cho 4 => 19681970 chia hết cho 4 => 19681970 = 4.k
=> \(7^{1968^{1970}}=7^{4k}=\left(7^4\right)^k=\left(...1\right)^k=\left(...1\right)\)
+) 68 chia hết cho 4 => 6870 chia hết cho 4 => 6870 = 4.h
=> \(3^{68^{70}}=3^{4h}=\left(3^4\right)^h=\left(...1\right)^h=\left(...1\right)\)
Vậy \(7^{1968^{1970}}-3^{68^{70}}=\left(...1\right)-\left(...1\right)=\left(...0\right)\)=> hiệu này chia hết cho 10
Mà \(0,7.\left(7^{1968^{1970}}-3^{68^{70}}\right)=\frac{7.\left(7^{1968^{1970}}-3^{68^{70}}\right)}{10}\)
vậy....