K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 5 2023

Em ghi đề thiếu!

a: \(H=6x^3y^4-2x^4y^2+3x^2y^2+5x^4y^2-A\cdot x^3y^4\)

\(=x^3y^4\left(6-A\right)+x^4y^2\left(5-2\right)+3x^2y^2\)

\(=\left(6-A\right)\cdot x^3y^4+x^4y^2\cdot3+3x^2y^2\)

Để H có bậc là 6 thì 6-A=0

=>A=6

b: Khi A=6 thì \(H=\left(6-6\right)\cdot x^3y^4+3x^4y^2+3x^2y^2\)

\(=3x^4y^2+3x^2y^2\)

\(=3x^2y^2\left(x^2+1\right)\)

\(x^2+1>1>0\forall x\ne0\)

\(x^2>0\forall x\ne0\)

\(y^2>0\forall y\ne0\)

Do đó: \(x^2y^2\left(x^2+1\right)>0\forall x,y\ne0\)

=>\(H=3x^2y^2\left(x^2+1\right)>0\forall x,y\ne0\)

=>H luôn dương khi x,y khác 0

17 tháng 3 2020

Giả sử P( x ) có ít nhất 3 nghiệm phân biệt : x1 ; x2 ; x3

 \( \implies\) P( x1 ) = 0 \(\iff\) ax12 + bx1 + c = 0 ( 1 )

          P( x2 ) = 0 \(\iff\) ax2+ bx2 + c = 0 ( 2 )

          P( x3 ) = 0 \(\iff\) ax3+ bx3 + c = 0 ( 3 )

+)Lấy ( 1 ) - ( 2 ) vế với vế ta được : ( ax12 + bx1 + c ) - ( ax2+ bx2 + c ) = 0

                                                \( \implies\)  ax12 + bx- ax2- bx2  = 0

                                                \( \implies\) ( ax12 - ax22 ) + ( bx1 - bx2 ) = 0

                                                \( \implies\) a( x12 - x22 ) + b( x1 - x2 ) = 0

                                                \( \implies\) a( x1 - x2 )( x1 + x2 ) + b(x1 - x2 ) = 0

                                                \( \implies\) ( x1 - x2 ) [ a( x1 + x2 ) + b ] = 0

 Mà x1 - x2 khác 0   \( \implies\)   a( x1 + x2 ) + b = 0 ( 4 )

+)Lấy ( 1 ) - ( 3 )  vế với vế ta được : ( ax12 + bx1 + c ) - ( ax3+ bx3 + c ) = 0   

                                                \( \implies\) ax12 + bx- ax3- bx3  = 0

                                                \( \implies\) ( ax12 - ax32 ) + ( bx1 - bx3 ) = 0

                                                \( \implies\) a( x12 - x32 ) + b( x1 - x3 ) = 0

                                                \( \implies\) a( x1 - x3 )( x1 + x3 ) + b(x1 - x3 ) = 0

                                                \( \implies\) ( x1 - x3 ) [ a( x1 + x3 ) + b ] = 0

 Mà x1 - x3 khác 0   \( \implies\)   a( x1 + x3 ) + b = 0 ( 5 )            

+)Lấy ( 4 ) - ( 5 )  vế với vế ta được : [ a( x1 + x2 ) + b ] - [ a( x1 + x3 ) + b ] = 0 

                                                \( \implies\) a( x1 + x2 ) + b a( x1 + x3 ) - b  = 0

                                                \( \implies\) a( x1 + x2 ) a( x1 + x3 ) = 0

                                                \( \implies\) a( x1 + x2 -  x1 - x) = 0 

                                                \( \implies\) a ( x2 - x3 ) = 0

  Mà x2 - x3 khác 0   \( \implies\)   = 0 ( vô lý )

  Vậy P( x ) luôn không có quá 2 nghiệm phân biệt                      

22 tháng 6 2017

sai vì có những trường hợp đa thức không có nghiêm nào.

ví dụ: 

\(x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge0\)

vậy phương trình vô nghiệm.

theo đầu bài thì đa thức trên phải có hai nghiệm, nhưng theo chứng minh trên thì đa thức không có nghiệm nào (tức là số nghiệm của 1 đa thức một biến không phải lúc nào cũng bằng số bậc của đa thức)

17 tháng 2 2021

yếu quá

28 tháng 4

HasAki nè