Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
VD:4;6;8;10;12 = 40 thì 40 chia hết cho 8
Ta kết luận tổng của 5 số chẵn liên tiếp chia hết cho 8
1:vì 2 số TNLT có 1 số lẻ & 1 số chẵn => trong 2 số đó sẽ có 1 số chia hết cho 2
1. Trong 2 số tự nhiên liên tiếp có ít nhất 1 số chia hết cho 2
=> tích 2 số đó chia hết cho 2.
2. Trong 2 số tự nhiên liên tiếp có ít nhất 1 số chia hết cho 2;
trong 3 số tự nhiên liên tiếp có it nhất 1 số chia hết cho 3
Mà (2;3) = 1
=> Tích 3 số đó chia hết cho 2.3 = 6.
4 số chẵn tự nhiên liên tiếp luôn luôn tồn tại :
1 số chẵn chia hết cho 2
1 số chẵn chia hết cho 4
1 số chẵn chia hết cho 6
Và 1 số chia hết cho 8
Vậy tích của chúng luôn luôn chia hết cho 2.4.6.8 = 384
a, vì trong 3 số đó có số chia hết cho 3
b, vì trong 3 số lẻ có số chia hết cho 3
c, vì 6 số thì sẽ 3 cặp có tổng tương đương và cặp ở giữa là 2 số liên tiếp có tổng là số lẻ cho nên 3 cặp đó sẽ bằng tổng nhau nhân lên 3 lần lên 6 số liên tiếp ko chia hết cho 6 mà chỉ chia hết cho 3.
a)Gọi 3 số chẵn liên tiếp là 2n;2n+2;2n+4.Theo bài ra ta có: \(\left(2n+2n+2+2n+4\right)⋮3\)
- \(2n+2n+2+2n+4=6n+6\)
\(=6\left(n+1\right)\)
\(=\left[3.2\left(n+1\right)\right]⋮3\)=>Điều phải chứng minh.
b)Gọi 3 số lẻ liên tiếp là 2n+1;2n+3 và 2n+5.Theo bài ra ta có: \(\left(2n+1+2n+3+2n+5\right)⋮3\)
- \(2n+1+2n+3+2n+5=6n+9\)
\(=\left[3\left(2n+3\right)\right]⋮3\) =>Điều phải chứng minh.
c)Gọi 6 số nguyên liên tiếp là n;n+1;n+2;...;n+5.Theo bài ra ta có:
- \(\left(n+n+1+n+2+n+3+n+4\right)⋮5\)
\(=5n+10\)
\(=\left[5\left(n+2\right)\right]⋮5\)=>Điều phải chứng minh.
- \(\left(n+n+1+n+2+n+3+n+4+n+5\right)\)không \(⋮6\)
\(=6n+15\) .Vì \(15\) không \(⋮6\)=> \(6n+15\)không \(⋮6\).
T_i_c_k cho mình nha.
Thank you so much!Wish you would better at Math ^^
4 số lẻ ltiếp là
2k+1;2k+3;2k+5;2k+7(k thuộc N)
tổng là:
2k+1+2k+3+2k+5+2k+7
=8k+16
=8(k+2)
Vậy tổng của 4 số lẻ liên tiếp thì hết cho 8
Ta đặt 4 số lẻ liên tiếp là a+1;a+3;a+5;a+7
Ta có: (a+1)+(a+3)+(a+5)+(a+7)
=a+1+a+3+a+5+a+7
=(a+a+a+a)+(1+3+5+7)
=4a+16
Mà: 16 chia hết cho 8
=> 4x+16 chia hết cho 8
=> Ta có kết luận: Tổng 4 số lẻ liên tiếp chia hết cho 8
Gọi 4 số tự nhiên liên tiếp là: 4k ; 4k + 1 ; 4k + 2 ; 4k + 3 ( k thuộc N )
Tích 4 số bằng 4k.(4k+1).(4k+2).(4k+3) chia hết cho 4 vì 4k chia hết cho 4
=> Tích 4 số tự nhiên liên tiếp chia hết cho 4.
Mk ko biết có đúng ko nữa
Vì 4 số tự nhiên liên tiếp có 1 số chia hết cho 4
Vậy tích 4 số tự nhiên liên tiếp chia hết cho 4
gọi số chẵn thứ nhất là 2n
số chẵn thứ 2 là 2n+2
Tích của chúng là A(n) = 2n (2n + 2 ). Ta có 8 = 4.2
Do đó ta viết : A(n)= 4.n (n+1)
A(n) là tích của hai thừa số : một thừa số là 4, chia hết cho 4 và một thừa số n (n+1) chia hết cho 2. Vì vậy A(n) = 4.n (n+1) chia hết cho 4.2= 8 (đpcm)
Gọi 2k và 2k + 2 là 2 số chẵn liên liếp, ta có :
2k x ( 2k + 2 ) = 4k^2+ 4k = 4k ( k + 1)
Ta có k (k + 1) luôn luôn chia hết cho 2
=> 4 x k x ( k + 1) chia hết cho 2 x 4 = 8
Vậy 4k (k + 1) chia hết cho 8
=> 2 số chẵn liên tiếp luôn chia hết cho 8