Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét 2017 số: 2015;20152015;...
Khi chia số hạng của dãy cho 2016 thì sẽ có hai phép chia có cùng số dư.Giả sử 2 số đó là: a= 201520152015..2015(m số 2015) b= 201520152015...2015(n số 2015) (với 1=< n<m=< 2017)
=> Hiệu của a và b chia hết cho 2016 hay:
a-b=20152015...2015000chia hết cho 2016 (đpcm)
nếu lấy A=2.3.4...2015.2016.2017, thì A chia hết cho 2,3,...2015,2016,2017
và dãy 2015 só bắt đầu từ A+2 đều là hợp số :
A+2;A+3;...;A+2015;A+2015;A+2017
bởi vì A+2 chia hết cho 2
A+3 chia hết cho 3
.......
A+2016 chia hết 2016
A+2017 chia hết 2017 ( ĐPCM)
tick nhé
\(gcd\left(1991;10^k\right)=1\) với mọi \(k\).
Giả sử ko có số nào dạng \(2003...2003\) mà chia hết cho \(1991\).
Xét \(1992\) số \(2003,20032003,...,20032003...2003\) (số cuối cùng có \(1992\) lần lặp \(2003\)).
Theo nguyên lí Dirichlet thì tồn tại 2 số cùng số dư khi chia cho \(1991\).
Gọi chúng là \(2003...2003\) có \(m\) và \(n\) lần lặp số \(2003\).
Ta trừ chúng cho nhau, ở đây cho \(m>n\) thì hiệu là con số này:
\(2003...2003000...000\) (trong đó có \(m-n\) số \(2003\)và \(n\) số \(0\))
Số này chia hết cho \(1991\).
Mà \(gcd\left(1991;10^n\right)=1\) nên \(2003...2003\) (với \(m-n\) số \(2003\)) chia hết cho \(1991\) (vô lí)
Vậy điều giả sử là sai, suy ra đpcm.
Em đã được học nguyên lí Dirichlet chưa?
Đề của em bị thiếu nhé.
tôi chịu