Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi 4 stn liên tiếp là k, k+1, k+2, k+3
Ta có k(k+1)(k+2)(k+3)+1
= k(k+3)(k+1)(k+2)+1
= (k2 +3k)(k2 +3k+2)+1
Đặt k2 +3k = A
= A(A+2)+1
= A2 +2A + 1
= (A+1)2 => đpcm
#)Giải :
Gọi bốn số tự nhiên liên tiếp là a, a+1, a+2, a+3
Theo đề bài, ta có : \(a\left(a+1\right)\left(a+2\right)\left(a+3\right)+1\)
\(=\left(a^2+3a\right)\left(a^2+3a+2\right)+1\)
\(=\left(a^3+3a+1-1\right)\left(a^3+3a+1+1\right)-1\)
\(=\left(a^3+3a+1\right)^2-1^2-1\)
\(=\left(a^3+3a+1\right)^2\left(đpcm\right)\)
Ta có :
\(n\left(n+1\right)\left(n+2\right)\left(n+3\right)=\left[n\left(n+3\right)\right].\left[\left(n+1\right)\left(n+2\right)\right]=\left(n^2+3n\right)\left(n^2+3n+2\right)\)
ko là số cp
Vì 2A = 2.1.3.5.....2011
Dễ thấy 2A chia hết cho 2 mà không chia hết cho 4
=> 2A không là bình phương của 1 số nguyên nào
VÌ 2A là chẵn => 2A - 1 lẻ, mà 2A- 1 ko chia hết cho 3, 5, 7,...,2011
( vì 2A chia hết cho các số đó)
Tương tự vậy ta thấy ngay 2A-1, 2A không là bình phương cảu bất kì số nguyên nào
Ta gọi :3SND lần lượt là\(N,N+1,N+2\left(N\in Z\right)\)
\(N\left(N+1\right)\left(N+2\right)=\left(N^2+N\right)\left(N+2\right)=N^3+2N^2+N^2+2N=N^3+3N^2+2N\)
\(N^3< N^3+3N^2+2N< N^3+3N^2+3N+1\)
\(\Rightarrow N^3< N^3+3N^2+2N< \left(N+1\right)^3\left(1\right)\)
Vì \(N\)là SND nên từ \(\left(1\right)\)
Ta có:\(n\left(n+1\right)\left(n+2\right)\)ko là LP của 1 STN
đặt ab + 4 = m2 (m là số tự nhiên)
=> a.b = m2 - 4 = (m - 2) . (m + 2) = => b = (m - 2) . (m + 2) / a
chọn m = a + 2 => m - 2 = a
=> b = a.(a+4)/a = a + 4
vậy với mọi số tự nhiên a luôn tồn tại số tự nhiên b = a + 4 để ab + 4 là số chihs phương
t i c k nhé!! 565756876879780
t i c k mk nha bn!!
8768789879080