Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ê bạn là antifan hay ARMY thế hở, mà nếu là ARMY thì sao lại để logo thế kia, còn nếu là anti í thì sao lại có chữ ARMY dưới phần logo và nickname hở, m là gì để tao còn biết.
Bg
a) Gọi số chẵn nhỏ nhất trong ba số chẵn liên tiếp là 2x (x \(\inℤ\))
=> Tổng ba số chẵn liên tiếp = 2x + (2x + 2) + (2x + 4)
=> 2x + (2x + 2) + (2x + 4) = 2x + 2x + 2 + 2x + 4
=> 2x + (2x + 2) + (2x + 4) = (2x + 2x + 2x) + (2 + 4)
=> 2x + (2x + 2) + (2x + 4) = 2.3x + 6
=> 2x + (2x + 2) + (2x + 4) = 6x + 6.1
=> 2x + (2x + 2) + (2x + 4) = 6.(x + 1) \(⋮\)6
=> Tổng ba số tự nhiên liên tiếp chia hết cho 6
=> ĐPCM
b) Bg
Tổng ba số lẻ liên tiếp luôn là một số lẻ
Mà 6 chẵn
=> Tổng của ba số lẻ liên tiếp không chia hết cho 6
=> ĐPCM
c) Bg
Ta có: a \(⋮\)b và b \(⋮\)c (a, b, c \(\inℤ\))
Vì a \(⋮\)b
=> a = by (bởi y \(\inℤ\))
Mà b \(⋮\)c
=> by \(⋮\)c
=> a \(⋮\)c
=> ĐPCM
d) Bg
Ta có: P = a + a2 + a3 +...+ a2n (a, n\(\inℕ\))
=> P = (a + a2) + (a3 + a4)...+ (a2n - 1 + a2n)
=> P = [a.(a + 1)] + [a3.(a + 1)] +...+ [a2n - 1.(a + 1)]
=> P = (a + 1).(a + a3 + a2n - 1) \(⋮\)a + 1
=> P = a + a2 + a3 +...+ a2n \(⋮\)a + 1
=> ĐPCM (Điều phải chứng mình)
a)
gọi 3 số chẵn liên tiếp là 2x,4x,6x( x là số tự nhiên)
ta có 2x+4x+6x=12x chia hết cho 6
=> Tổng của ba số chẵn liên tiếp thì chia hết cho 6
b)
gọi 3 số lẻ liên tiếp là 3k-1 , 3k , 3k+1( k là số tự nhiên)
ta có 3k-1+3k+3k+1=9k chia hết cho 3 nhưng không chia hết cho 2
=> Tổng ba số lẻ liên tiếp ko chia hết cho 6
c)
a chia hết cho b=> a=b.x(x là số tự nhiên)
b chia hết cho c=> b= c.y(y là số tự nhiên)
thay b=c.y, ta có a= c.y.x chia hết cho c
=> Nếu a chia hết cho b và b chia hết cho c thì a chia hết cho c
d)
a chia hết cho 7=> a = 7x ( x là số tự nhiên)
b chia hết cho 7=> b=7y(y là số tự nhiên)
a-b=7x7t=7(x-y) chia hết cho 7
=> Nếu a và b chia hết cho 7 có cùng số dư thì hiệu a - b chia hết cho 7
học tốt
a) Gọi 3 số chẵn liên tiếp lần lượt là 2n, 2n+2, 2n+4
Tổng của ba số chẵn liên tiếp là: 2n + 2n+2 + 2n+4
= 6n+6
= 6(n+1) chia hết cho 6
Vậy tổng của ba số chẵn liên tiếp thì chia hết cho 6
a,gọi 3 số lẻ liên tiếp là:a+1,a+3,a+5(a thuộcn;a=2k)
Có a+5+a+1+a+3=3a+9=6k+9
#ko chia hết cho 6
a,
Gọi hai số tự nhiên liên tiếp là a và a + 1
Nếu a chia hết cho 2 thì bài toán được chứng minh.
Nếu a không chia hết cho 2 thì a = 2k + 1 (k∈N)
Suy ra: a + 1 = 2k + 1 + 1 = 2k + 2
Ta có: 2k ⋮ 2; 2 ⋮ 2
Suy ra: (2k + 2) ⋮ 2 hay (a + 1) ⋮ 2
Vậy trong hai số tự nhiên liên tiếp, có một số chia hết cho 2
Mik chỉ làm được câu a thôi nhưng vẫn mong bạn ủng hộ ^-^
a) hai số liên tiếp thì sẽ có 1 số chẵn và 1 số lẻ , số chẵn là số chia hết cho 2 nên trong hai số tự nhiên liên tiếp sẽ có 1 số chia hết cho 2
a) Vì có 1 số chẵn và 1 số lẻ trong 2 số tự nhiên liên tiếp nên chia hết cho 2
b) Trong 3 số tự nhiên liên tiếp thì có số cộng các chữ số của số đó chia hết cho3
c) Tổng 2 số tự nhiên liên tiếp là chẵn + lẻ = lẻ nên ko chia hết cho 2
d) 3 số tự nhiên liên tiếp thì có 1 số chia 3 dư 1 , 1 số chia 3 dư 2 , 1 số chia hết cho 3 nên lấy số dư là 1+2=3 chia hết cho 3 nên tổng 3 số tự nhiên liên tiếp chia hết cho 3