Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=3^1+3^2+3^3+.....+3^{100}\) \(=\left(3^1+3^2+3^3+3^4\right)+\left(3^5+3^6+3^7+3^8\right)+...+\left(3^{97}+3^{98}+3^{99}+3^{100}\right)\)
\(=120+3^5.\left(3^1+3^2+3^3+3^4\right)+....+3^{97}.\left(3^1+3^2+3^3+3^4\right)\)
\(=1.120+3^5.120+...+3^{97}.120\)
\(=\left(1+3^5+...+3^{97}\right).120\)
\(\Rightarrow S⋮120\)
Vậy ........
Ta có ;
S = 3 + 3 2 + 3 3 + ........ + 3 99 + 3 100
= ( 3 + 3 2 + 3 3 + 3 4 + 3 5) + .... + ( 3 96 + 3 97 + 3 98 + 3 99 + 3 100 )
= 3 ( 1 + 3 + 3 2 + 3 3 + 3 4 ) + .... + 3 96 . ( 1 + 3 + 3 2 + 3 3 + 3 4 )
= 3 . 121 + .... + 3 96 . 121
= 121 . ( 3 + .... + 3 96 ) chia hết cho 121 ( Do 121 chia hết cho 121 )
Vậy S = 3 + 3 2 + 3 3 + ........ + 3 99 + 3 100 chia hết cho 121
B=(3+3^2+3^3+3^4)+(3^5+3^6+3^7+3^8)+......+(3^97+3^98+3^99+3^100)
B=3(1+3+3^2+3^3)+3^5(1+3+3^2+3^3)+.......+3^97(1+3+3^2+3^3)
B=3.40+3^5.40+......+3^97.40
B=40.3.(1+3+3^2+.......+3^98+3^99)
B=120.(1+3+3^2+.........+3^98+3^99)
Suy ra B chia hết cho 120
cho B=3+3^2+3^3+...+3^100.chứng minh rằng B chia hết cho 120
Ta có :
A=3+3^2+3^3+...+3^100
B=(3+3^2+3^3+3^4)+(3^5+3^6+3^7+3^8)+...+(3^97+3^98+3^99+3^100)
B=3(1+3+3^2+3^3)+3^5(1+3+3^2+3^3)+....+3^97(1+3+3^2+3^3)
B=3.40+3^5.40+....+3^97.40
B=40.(3+3^5+...+3^97)chia hết cho 40
Vì B có 25 số lũy thừa cơ số 3 nên M chia hết cho 3.
Suy ra, B chia hết cho 40 và 3 tức là B chia hết cho 120
vậy A chia hết cho 120
a^3-a-12a=a(a^2-1)-12a=a(a+1)(a-1)-12a (1)
ta có a(a+1)(a-1) chia hết cho 6
12 chia hết cho 6
nên (1) chia hết cho 6
suy ra a^3-13a chia hết cho 6
\(E=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}\)
\(3E=1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}\)
\(3E-E=\left(1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}\right)-\left(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}\right)\)
\(2E=1+\frac{1}{3}+\frac{1}{3^2}+....+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)
\(6E=3+1+\frac{1}{3}+...+\frac{1}{3^{98}}-\frac{100}{3^{99}}\)
\(6E-2E=\left(3+1+\frac{1}{3}+...+\frac{1}{3^{98}}-\frac{100}{3^{99}}\right)-\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\right)\)
\(4E=3-\frac{100}{3^{99}}-\frac{1}{3^{99}}+\frac{100}{3^{100}}\)
\(4E=3-\frac{300}{3^{100}}-\frac{3}{3^{100}}+\frac{100}{3^{100}}\)
\(4E=3-\frac{203}{3^{100}}< 3\)
\(\Rightarrow4E< 3\)
\(\Rightarrow E< \frac{3}{4}\left(đpcm\right)\)
Bài 1:
Ta có: \(3+3^2+3^3+...+3^{100}\)
\(=\left(3+3^2+3^3+3^4\right)+....+\left(3^{97}+3^{98}+3^{99}+3^{100}\right)\)
\(=120+3^5\left(3+3^2+3^3+3^4\right)+....+3^{96}\left(3+3^2+3^3+3^4\right)\)
\(=120+3^5.120+...+3^{96}.120\)
\(=120.\left(1+3^5+.....+3^{96}\right)\)
\(\Rightarrow3+3^2+3^3+3^4+....+3^{100}\)chia hết cho 120 (vì có chứa thừa số 120)
Lời giải:
$S=(3+3^2+3^3+3^4)+(3^5+3^6+3^7+3^8)+....+(3^{97}+3^{98}+3^{99}+3^{100})$
$=3(1+3+3^2+3^3)+3^5(1+3+3^2+3^3)+....+3^{97}(1+3+3^2+3^3)$
$=(1+3+3^2+3^3)(3+3^5+...+3^{97})$
$=40(3+3^5+...+3^{97})$
$=40.3(1+3^4+....+3^{96})$
$=120(1+3^4+...+3^{96})\vdots 120$