Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi `100` số nguyên đã cho là : `a_1`;`a_2`;...;`a_(100)`
Xét `100` tổng sau : `S_1` = `a_1`
`S_2` = `a_1 + a_2`
` .... `
`S_(100)` = ` a_1 + a_2 + ... + a_(100) `
` => ` Ta xét 2 TH sau
` + TH1` Trong 100 tổng trên `\exists` 1 tổng `\vdots` 100 `=> ` `Đpcm`
` +TH2 ` Trong 100 tổng trên `\cancel{exists}` 1 tổng nào `vdots` 100
Khi đó chia `100` tổng này cho `100` ta được các số dư `in` { 1;2;3;...;99}
Vì có `100` số dư mà chỉ có `99` khả năng dư nên theo nguyên lí Đi-rích-lê sẽ tồn tại ít nhau 2 số dư bằng nhau khi chia cho `100`
Giả sư `a_m` và `a_n` là 2 số đó ( giả sử : `a_m > a_n` )
Suy ra ` a_m - a_n \vdots 100 ` hay ` (a_1 + a_2 + ... + a_m) - (a_1 + a_2 + ... + a_n) \vdots 100 ` `=> ` ` a_(n+1) + a_(n+2) + ... + a_m \vdots 100 ` ` => đpcm `
vd:1,2,3,4,5,6 trong đó có số 6 chia hết cho 6
vd:11,12,13,14,15,16 trong đo có số 12 chia hết cho 6
lời giải đi bạn ơi viết vd thi ko đc đâu