Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,Gọi d là UCLN(2n+1;3n+2)
Ta có:
3n+2 chia hết cho d
2n+1 chia hết cho d
=> 2(3n+2)-3(n+1)=1 chia hết cho d
=> d E {-1;1}
=> 2n+1 và 3n+2 luôn nguyên tố cùng nhau
=> BCNN(2n+1,3n+2)=(2n+1)(3n+2) (ĐPCM)
b, Gọi a là UCLN(2n+1;9n+6)
=> 2n+1 chia hết cho a
9n+6 chia hết cho a
=> 2(9n+6)-9(2n+1) chia hết cho a
=> 3 chia hết cho a=> a E {3;-3;1;-1}
Ta có: 9n+6 thì chia hết cho 3 nhưng 2n+1 thì chưa chắc
2n+1 chia hết cho 3 <=> n=3k+1 (k E N)
Vậy: UCLN(2n+1;9n+6)=3 <=> n=3k+1
còn nếu n khác: 3k+1
=> UCLN(2n+1;9n+6)=1
A=(2+22)+(23+24)+...+(289+290)
A=(2x1+2x2)+(23x1+23x2)+...+(289+290)
A=2x(1+2)+23x(1+2)+...+289x(1+2)
A=3x(2+23+...+289) chia hết cho 3
A=(2+22+23)+(24+25+26)+...+(288+289+290)
A=(2x1+2x2+2x22)+(24x1+24x2+24x22)+...+(288x1+288x2+288x22)
A=2x(1+2+22)+24x(1+2+22)+...+288x(1+2+22)
A=7x(2+24+288) chia hết cho 7
Mà (3;7)=1 =>A chia hết cho 21
A=(2+22)+(23+24)+...+(289+290)
=2(1+2)+23(1+2)+...+289(1+2)
=2.3+23.3+...+289.3
Nên A chia hết cho 3
A=(2+22+23)+(24+25+26)+...+(288+289+290)
=2(1+2+22)+24(1+2+22)+...+288(1+2+22)
=2.7+24.7+...+288.7
Nên A chia hết cho 7 . Vậy A chia hết cho 21
Việc khẳng định ƯCLN (2n+1, 9n+6)=3 là sai nhé bạn. 3 là ƯCLN có thể xảy ra của $2n+1, 9n+6$ thôi. Còn việc đưa ra khẳng định ƯCLN(2n+1, 9n+6)=3 là sai vì 2n+1 chưa chắc đã chia hết cho 3 với n là số tự nhiên.
\(5+5^3+5^5+5^7+..+5^{27}\)
\(=\left(5+5^3\right)+5^4\left(5+5^3\right)+...+5^{24}\left(5+5^3\right)\)
\(=130+130\cdot5^4+...+130\cdot5^{24}\)
\(=130\left(1+5^4+..5^{24}\right)\)
Vì \(130⋮26\Rightarrow5+5^3+5^5+...+5^{27}⋮26\left(đpcm\right)\)
a. Giả sử n+1 và 2n+3 chia hết cho d. Vậy 2n+2 chia hết cho d. Do đó 2n+3-(2n+2)=1 chia hết cho d. Vì vậy d lớn nhất bằng 1 nên n+1 và 2n+3 là 2 số nguyên tố cùng nhau. Kết luận phân số tối giản với mọi n là số tự nhiên khác 0. Câu b làm tương tự
a) Ta có : \(A=\dfrac{x^2+y^2+5}{x^2+y^2+3}=1+\dfrac{2}{x^2+y^2+3}\)
Dễ thấy \(x^2\ge0;y^2\ge0\forall x;y\)
nên \(x^2+y^2+3\ge3\)
\(\Leftrightarrow\dfrac{1}{x^2+y^2+3}\le\dfrac{1}{3}\)
<=> \(\dfrac{2}{x^2+y^2+3}\le\dfrac{2}{3}\)
\(\Leftrightarrow A=1+\dfrac{2}{x^2+y^2+3}\le\dfrac{5}{3}\)
\(\Rightarrow A_{max}=\dfrac{5}{3}\)(Dấu "=" xảy ra khi x = y = 0)
Gọi d=UCLN(n+1;3n+4)
\(\Leftrightarrow3n+4-3\left(n+1\right)⋮d\)
\(\Leftrightarrow1⋮d\)
=>d=1
=>UCLN(n+1;3n+4)=1
chứng minh rằng ƯCLN (n+1,3n+4)=1 , n ϵ N - Tìm trên Google
tk nha