Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
dễ lăm chỉ cần áp dụng bài toán phụ a2+b2>=2ab là ra chúc bạn làm được bài tốt nhé mình chỉ gợi ý cho thôi
`a) 2 ( a^2 + b^2 ) >= ( a + b )^2`
`<=> 2a^2 + 2b^2 >= a^2 + 2ab + b^2`
`<=> a^2 - 2ab + b^2 >= 0`
`<=> ( a - b )^2 >= 0` (Luôn đúng `AA a,b`)
`=>` Đẳng thức được c/m
_________________________________________
`b) a^2 + b^2 + c^2 >= ab + bc + ca`
`<=> 2a^2 + 2b^2 + 2c^2 >= 2ab + 2bc + 2ca`
`<=> ( a^2 - 2ab + b^2 ) + ( b^2 - 2bc + c^2 ) + ( c^2 - 2ca + a^2 ) >= 0`
`<=> ( a - b )^2 + ( b - c )^2 + ( c - a )^2 >= 0` (Luôn đúng `AA a,b,c`)
`=>` Đẳng thức được c/m
a)
Đặt \(A=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)
\(\Rightarrow A=\frac{a^2}{ab+ac}+\frac{b^2}{ab+bc}+\frac{c^2}{ac+bc}\)
Áp dụng BĐT Schwarz , ta có :
\(A\ge\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ac\right)}\) (1)
Mà \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)
\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ac+a^2\ge0\)
\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ac\)
\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac\ge3\left(ab+bc+ac\right)\)
\(\Leftrightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ac\right)\)
\(\Leftrightarrow\frac{\left(a+b+c\right)^2}{ab+bc+ac}\ge3\) (2)
Từ (1) và (2) , suy ra : \(A\ge\frac{3}{2}\)
Dấu "=" xảy ra khi \(a=b=c\)
b)
\(\frac{\left(a+b\right)^2}{c}+\frac{\left(b+c\right)^2}{a}+\frac{\left(c+a\right)^2}{b}\ge\frac{\left[\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right]^2}{a+b+c}=4\left(a+b+c\right)\)
1/ \(a^2-b^2+c^2\ge\left(a-b+c\right)^2\)
\(\Leftrightarrow bc-ac-b^2+ab\ge0\)
\(\Leftrightarrow\left(bc-ac\right)+\left(ab-b^2\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)\left(b-c\right)\ge0\)(đúng)
Vì \(\hept{\begin{cases}a\ge b\\b\ge c\end{cases}}\)
2/ \(a^2-b^2+c^2-d^2\ge\left(a-b+c-d\right)^2\)
\(\Leftrightarrow-d^2+cd-bd+ad+bc-ac-b^2+ab\ge0\)
\(\Leftrightarrow\left(dc-d^2\right)+\left(ad-bd\right)+\left(bc-ac\right)+\left(ba-b^2\right)\ge0\)
\(\Leftrightarrow d\left(c-d\right)+d\left(a-b\right)+\left(a-b\right)\left(b-c\right)\ge0\)
Đúng vì \(a\ge b\ge c\ge d\ge0\)
a.
\(2\left(a^4+b^4\right)\ge\left(a+b\right)\left(a^3+b^3\right)\)
\(\Leftrightarrow2a^4+2b^4\ge a^4+ab^3+a^3b+b^4\)
\(\Leftrightarrow a^4+b^4\ge ab^3+a^3b\)
\(\Leftrightarrow a^4-a^3b+b^4-ab^3\ge0\)
\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)\left(a^3-b^3\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)(*)
Mà \(a^2+ab+b^2=\left(a^2+2\cdot a\cdot\dfrac{1}{2}b+\dfrac{b^2}{4}\right)+\dfrac{3b^2}{4}=\left(a+\dfrac{b}{2}\right)^2+\dfrac{3b^2}{4}\ge0\)
Suy ra (*) đúng => đpcm
Dấu "=" xảy ra khi a = b
b.
\(3\left(a^4+b^4+c^4\right)\ge\left(a+b+c\right)\left(a^3+b^3+c^3\right)\)
\(\Leftrightarrow3a^4+3b^4+3c^4\ge a^4+ab^3+ac^3+a^3b+b^4+bc^3+a^3c+b^3c+c^4\)
\(\Leftrightarrow2a^4+2b^4+2c^4\ge ab^3+a^3b+b^3c+bc^3+ca^3+c^3a\)
\(\Leftrightarrow\left(a^4+b^4\right)+\left(b^4+c^4\right)+\left(c^4+a^4\right)\ge\left(a^3b+ab^3\right)+\left(b^3c+bc^3\right)+\left(c^3a+ca^3\right)\)
Theo câu a. thì điều này đúng
Dấu "=" khi a=b=c
Làm đại luôn mặc dù chưa xong xD. Có sai sót gì cho xin lỗi nha!
Đặt: \(M=\frac{a^2+bc}{\left(b+c\right)^2}+\frac{b^2+ca}{\left(c+a\right)^2}+\frac{c^2+ab}{\left(a+b\right)^2}\)
\(M=\frac{\frac{1}{\left(b+c\right)^2}}{\frac{1}{a^2+bc}}+\frac{\frac{1}{\left(c+a\right)^2}}{\frac{1}{b^2+ca}}+\frac{\frac{1}{\left(a+b\right)^2}}{\frac{1}{c^2+ab}}\)
Áp dụng Bđt AM-GM dạng Engel:
\(M\ge\frac{\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)^2}{\frac{1}{a^2+bc}+\frac{1}{b^2+ca}+\frac{1}{c^2+ab}}\)
Chuẩn hóa: \(a+b+c=3\)
Có: \(A=\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)^2\ge\left(\frac{9}{2\left(a+b+c\right)}\right)^2=\left(\frac{3}{2}\right)^2\)
CM:\(B=\frac{1}{a^2+bc}+\frac{1}{b^2+ca}+\frac{1}{c^2+ab}\le\frac{3}{2}\)so what ? Tới đây k biết làm.
\(a^2+b^2+c^2+d^2\ge\left(a+b\right)\left(c+d\right)\)
\(\Leftrightarrow2\left(a^2+b^2+c^2+d^2\right)\ge2\left(ac+ad+bc+bd\right)\)
\(\Leftrightarrow2a^2+2b^2+2c^2+2d^2-2ac-2ad-2bc-2bd\ge0\)\(\Leftrightarrow\left(a^2-2ac+c^2\right)+\left(a^2-2ad+d^2\right)+\left(b^2-2bc+c^2\right)+\left(b^2-2bd+d^2\right)\ge0\)\(\Leftrightarrow\left(a-c\right)^2+\left(a-d\right)^2+\left(b-c\right)^2+\left(b-d\right)^2\ge0\)Luôn đúng với mọi \(a;b;c;d\in Z\)
Cảm ơn bạn nhiều lắm <3
Có thể giải bằng các bất đẳng thức phụ được không bạn?