Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: a3-7a= a3-a-6a
=a(a2-1)-6a
=a(a-1)(a+1)-6a
vì a(a-1)(a+1) là tích của 3 số nguyên liên tiếp chia hết cho 3
Trong đó: a(a-1)(a+1) có ít nhất một số nên chia hết cho 2
=> a(a-1)(a+1) chia hết cho 6
=> 6a chia hết cho 6
=> đpcm
Ta có: a3-7a = a(a2-7) = a(a2-1-6) = a(a-1)(a+1) -6a
mà \(\left\{{}\begin{matrix}a\left(a-1\right)\left(a+1\right)⋮6\\-6a⋮6\end{matrix}\right.\Rightarrow a\left(a-1\right)\left(a+1\right)-6a⋮6\)
=> a3-7a \(⋮6\) (a\(\in Z\))
ta có :
\(a^3-a=a\left(a^2-1\right)=a\left(a-1\right)\left(a+1\right)\) là tích của ba số nguyên liên tiếp nên \(a^3-a\text{ chia hết cho 6}\)
ta có : \(a^5-a=a\left(a^4-1\right)=a\left(a-1\right)\left(a+1\right)\left(a^2+1\right)\)
ta có tích trên chia hết cho 6 do chứng minh ở ý trên, ta cần chỉ ra nó chia hết cho 5 nữa.
thật vậy: nếu a=5q hoặc a=5q+1 hoặc a=5q+4 thì a(a-1)(a+1) chia hết cho 5
nếu a=5q+2 hoặc a=5q+3 thì \(a^2+1\text{ chia hết cho 5}\)
vậy \(a^5-a\text{ chia hết cho 30}\)
Ta có a3 - a = a(a2 - 1) = (a - 1)a(a + 1) \(⋮6\)(tích 3 số nguyên liên tiếp)
Ta có a5 - a = a(a4 - 1) = a(a2 - 1)(a2 + 1) = (a - 1)a(a + 1)(a2 + 1)
= (a - 1)a(a + 1)(a2 - 4 + 5)
= (a - 1)a(a + 1)(a2 - 4) + 5(a - 1)a(a + 1)
= (a - 2)(a - 1)a(a + 1)(a + 2) + 5(a - 1)a(a + 1)
Nhận thấy (a - 1)a(a + 1) \(⋮\)6
=> 5(a - 1)a(a + 1) \(⋮\)30
Lại có (a - 2)(a - 1)a(a + 1)(a + 2) \(⋮30\)(tích 5 số nguyên liên tiếp)
=> a - 2)(a - 1)a(a + 1)(a + 2) + 5(a - 1)a(a + 1) \(⋮\)30
=> a5 - a \(⋮30\)
\(a^2\left(a+1\right)+2a\left(a+1\right)=a\left(a+1\right)\left(a+2\right)\) là 3 số nguyên liên tiếp nên chia hết cho 6
a/
a^3 -a = a.[a^2-1] = [a-1] .a . [a+1] là tích 3 số nguyên liên tiếp nên chia hết cho 6
b/
a^3 -7a = a.[a^2-7] = a.[a^2-1-6] = a.[a-1]. [a+1] -6a
Vì a.[a-1] [a+1] chia hết cho 6 [theo a] ; 6a chia hết cho 6
=> a^3 -7a chia hết cho 6
CMR a^3 chia hết cho 24