Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mk thấy bn nên xem lại đề đi. nếu n=1 thì \(6^{2n}+19^n-2^{n+1}\) ko chia hết cho 17
62n+19n-2n+1=36n+19n-2n2=(36n-2n)+(19n-2n)=34k+17j chia het 17
vay bt chia het 17
Ta có:
\(3^{n+2}-2^{n+2}+3^n-2^n\)
\(=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)
\(=\left(3^n.3^2+3^n.1\right)-\left(2^n.2^2+2^n.1\right)\)
\(=3^n\left(3^2+1\right)-2^n\left(2^2+1\right)\)
\(=3^n\left(9+1\right)-2^{n-1}.2^1\left(4+1\right)\)
\(=3^n.10-2^{n-1}.2.5\)
\(=3^n.10-2^{n-1}.10\)
\(=\left(3^n-2^{n-1}\right).10\text{⋮}10\)
ta có : 3\(^{n+2}\)-\(2^{2+n}\)+3\(^n\)-2\(^n\)=\(3^n.3^2-2^2.2^n+3^n-2^n\)
=\(3^n\)(\(3^2+1\))-2\(^n\)(2\(^2\)+1)
=\(3^n\).10-\(2^n\).5
=5 (3\(^n\).2-2\(^n\))=5.(2.\(3^n\)-\(2^{n-1}\))
=5.A
ta thấy A là số chẵn mà 5 nhân vs bất kì số chẵn nào cũng có tân cùng = 0 nên \(3^{n+2}-2^{n+2}\)+\(3^n-2^n\)\(⋮10\)(đpcm )
Ta có:\(3^{n+2}-2^{n+2}+3^n-2^n=3^n\cdot9-2^n\cdot4+3^n-2^n=\left(3^n\cdot9+3^n\right)-\left(2^n\cdot4+2^n\right)\)
\(=3^n\left(9+1\right)-2^n\left(4+1\right)\)
\(=3^n\cdot10-2^n\cdot5\)
Vì n>0\(\Rightarrow2^n⋮2\Rightarrow2^n\cdot5⋮2,2^n\cdot5⋮5\)
Mà ƯCLN(2;5)=1
\(\Rightarrow2^n\cdot5⋮2\cdot5=10\)
Lại có:\(3^n\cdot10⋮10\)
\(\Rightarrow3^n\cdot10-2^n\cdot5⋮10\)
\(\Rightarrow3^{n+2}-2^{n+2}+3^n-2^n⋮10\left(đpcm\right)\)
Đăt S = 3^(n+2)-2^(n+2)+3^n-2^n = 3^(n+2) + 3^n - [2^(n+2) + 2^n]
Ta có 3^(n+2) + 3^n = 9.3^n + 3^n = 10.3^n (chia hết cho 10)
Và 2^(n+2) + 2^n = 4.2^n + 2^n = 5.2^n (chia hết cho 10, vì chia hết cho 2 và 5)
Suy ra S chia hết cho 10.
* m^2+n^2 chia hết cho 3 thì m,n chia hết cho 3
Giả sử m không chia hết cho 3 => m^2 o chia hết cho 3 mà m^2 chia 3 dư 0 hoặc 1 => m^2 chia 3 dư 1 => n^2 chia 3 dư 2 (vô lý)
=>giả sử sai => m chia hết cho 3
Chứng minh tương tự n chia hết cho 3
* m,n chia hết cho 3 => m^2+n^2 chia hết cho 3
Vì m,n chia hết cho 3 => m^2, n^2 chia hết cho 3 => m^2+n^2 chia hết cho 3