K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 5 2022

\(\left(x+y\right)^2\ge4xy\)

\(\Leftrightarrow x^2+2xy+y^2\ge4xy\)

\(\Leftrightarrow x^2-2xy+y^2\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\ge0\) (luôn đúng với \(\forall x,y\))

-Vậy BĐT đã được c/m.

-Dấu "=" xảy ra khi \(x=y\)

18 tháng 5 2022

ta co

vt (x+y)2=x2+y2+2xy

=x2-2xy+y2+4xy≥ 4xy (dpcm)

 

NV
24 tháng 12 2022

\(\left(1+x^2\right)\left(1+y^2\right)+4xy+2\left(x+y\right)\left(1+xy\right)\)

\(=1+x^2+y^2+x^2y^2+4xy+2\left(x+y\right)\left(1+xy\right)\)

\(=\left(x^2+y^2+2xy\right)+\left(x^2y^2+2xy+1\right)+2\left(x+y\right)\left(1+xy\right)\)

\(=\left(x+y\right)^2+\left(1+xy\right)^2+2\left(x+y\right)\left(1+xy\right)\)

\(=\left(x+y+1+xy\right)^2\) là SCP

24 tháng 12 2022

(1+x2)(1+y2)+4xy+2(x+y)(1+xy)

 = 1+y2+x2+x2y2+2xy+2xy+2(x+y)(1+xy)

 =(x2+2xy+y2)+(x2y2+2xy+1)+2(x+y)(1+xy)

 =(x+y)2+(xy+1)2+2(x+y)(1+xy)

 =(x+y+xy+1)2

 

23 tháng 6 2021

a) Xét \(x^2-4x+4=\left(x-2\right)^2\ge0\)

<=> \(x^2-4x\ge-4>-5\)

b) \(2x^2+4y^2-4x-4xy+5\)

\(\left(x^2-4x+4\right)+\left(x^2-4xy+4y^2\right)+1\)

\(\left(x-2\right)^2+\left(x-2y\right)^2+1\ge1>0\)

6 tháng 12 2021

Ta có: \(2x^2+4y^2+4xy-6x+10\)\(=x^2+4xy+4y^2+x^2-6x+9+1\)\(=\left(x+2y\right)^2+\left(x-3\right)^2+1\)

Vì \(\left(x+2y\right)^2\ge0;\left(x-3\right)^2\ge0\)\(\Rightarrow\left(x+2y\right)^2+\left(x-3\right)^2\ge0\)\(\Leftrightarrow\left(x+2y\right)^2+\left(x-3\right)^2+1\ge1>0\)\(2x^2+4y^2+4xy-6x+10>0\left(đpcm\right)\)

13 tháng 12 2020

\(=x^2+4y^2+4xy+x^2-6x+9+1=\left(x+2y\right)^2+\left(x-3\right)^2+1\)

Ta có: \(\left(x+2y\right)^2\ge0;\left(x-3\right)^2\ge0\left(\forall x;y\right)\)

\(\Rightarrow\left(x+2y\right)^2+\left(x-3\right)^2+1\ge1>0\forall x;y\)

=> đpcm

27 tháng 10 2018

a ) Đề sai

b ) \(x^2-x+1=x^2-x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\forall x\left(đpcm\right)\)

c ) \(x-x^2-2=-\left(x^2-x+\dfrac{1}{4}\right)-\dfrac{7}{4}=-\left(x-\dfrac{1}{2}\right)^2-\dfrac{7}{4}\le-\dfrac{7}{4}< 0\forall x\left(đpcm\right)\)

20 tháng 10 2021

Ta có: \(M=\left(x^2-4xy+4y^2\right)+\left(y^2-2y+1\right)+2=\left(x-2y\right)^2+\left(y-1\right)^2+2\)

Vì \(\left(x-2y\right)^2,\left(y-1\right)^2>0\)với mọi x,y nên M luôn dương

Ta có điều phải chứng minh

AH
Akai Haruma
Giáo viên
27 tháng 10 2018

Đề bài sai. Thử lại với $x=2; y=4$

21 tháng 5 2018

Thực hiện phép nhân đa thức với đa thức ở vế trái

=> VT = VP (đpcm)