K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2017

a) Giả sử \(2n+3;4n+8\) chưa nguyên tố cùng nhau

\(\Leftrightarrow2n+3;4n+8\)có ước chung là số nguyên tố

Gọi \(d=ƯC\left(2n+3;4n+8\right)\)

\(\Leftrightarrow\hept{\begin{cases}2n+3⋮d\\4n+8⋮d\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}4n+6⋮d\\4n+8⋮d\end{cases}}\)

\(\Leftrightarrow2⋮d\)

Vì \(d\in N;2⋮d\Leftrightarrow d=1;2\)

+) \(d=2\Leftrightarrow2n+3⋮2\) (vô lí)

\(\Leftrightarrow d=1\)

\(\Leftrightarrow2n+3;4n+8\)nguyên tố cùng nhau với mọi n

Câu b tương tự

Chúc b hc tốt!

25 tháng 7 2017

a)Gọi UCLN của 2n+3 và 4n+8 là d                        (d thuộc N*)

=>\(\hept{\begin{cases}2n+3\\4n+8\end{cases}}\)cùng chia hết cho d

=>(4n+8)-(2n+3) chia hết cho d

=>(4n+8)-2(2n+3) chia hết cho d

=>4n+8-4n-6 chia hết cho d

=>2 chia hết cho d

=>d thuộc Ư của 2

=>\(\orbr{\begin{cases}d=1\\d=2\end{cases}}\)

Có 2n+3 chia hết cho d

Mà 2n+3 là số lẻ nên d không thể = 2             (ước của số lẻ không =2)

=>d=1

=>UCLN(2n+3;4n+8)=1

Vậy 2n+3 và 4n+8 là 2 số nguyên tố cùng nhau

23 tháng 10 2017

20 tháng 10 2023

Mình mẫu đầu với cuối nhé:

a)  Đặt \(ƯCLN\left(3n+4,3n+7\right)=d\)  

\(\Rightarrow\left\{{}\begin{matrix}3n+4⋮d\\3n+7⋮d\end{matrix}\right.\)

\(\Rightarrow\left(3n+7\right)-\left(3n+4\right)⋮d\)

\(\Rightarrow3⋮d\)

 \(\Rightarrow d\in\left\{1,3\right\}\)

Nhưng do \(3n+4,3n+7⋮̸3\) nên \(d\ne3\Rightarrow d=1\)

Vậy \(ƯCLN\left(3n+4,3n+7\right)=1\) hay \(3n+4,3n+7\) nguyên tố cùng nhau.

 e) \(ƯCLN\left(2n+3,3n+5\right)=d\)

 \(\Rightarrow\left\{{}\begin{matrix}2n+3⋮d\\3n+5⋮d\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}6n+9⋮d\\6n+10⋮d\end{matrix}\right.\)

\(\Rightarrow\left(6n+10\right)-\left(6n+9\right)⋮d\)

\(\Rightarrow1⋮d\) \(\Rightarrow d=1\)

Vậy \(ƯCLN\left(2n+3,3n+5\right)=1\), ta có đpcm.

16 tháng 11 2020

e có 2 chia hết cho d; 2n+3 lẻ nên (2n+3,4n+8)=1

còn n+1-n=1 nên (n,n+1)=1

23 tháng 12 2017

a) Gọi ƯCLN (n + 3; n + 2) = d.

Ta thấy (n + 3) chia hết cho d; (n+2) chia hết cho d=>[(n + 3)- (n + 2)] chia hết cho d =>l chia hết cho d

Nên d = 1. Do đó n + 3 và n + 2 là hai số nguyên tố cùng nhau.

b) Gọi ƯCLN (3n+4; 3n + 7) = đ.

Ta thấy (3n + 4) chia hết cho d;(3n+7) chia hết cho d =>[(3n+7) - (3n + 4)] chia hết cho d =>3 chia hết cho d nên

d = 1 hoặc d = 3.

Mà (3n + 4) không chia hết cho 3; (3n + 7) không chia hết cho 3 nên d = 1. Ta có điều phải chứng minh.

c) Gọi ƯCLN (2n + 3; 4n + 8) = d.

Ta thấy (2n + 3) chia hết cho d ; (4n + 8) chia hết cho d => [(4n + 8) - 2.(2n +3)] chia hết cho d => 2 chia hết cho d

nên d = 1 hoặc d = 2.

Mà (2n+3) không chia hết cho 2 nên d = 1. Ta có điều phải chứng minh.

9 tháng 9 2017

Chị ơi emko hiểu chỗ 2.(2n+3) chia hết cho d => 4n+6 chia hết cho d 

Và 6ởđâu ra vạy chị

27 tháng 1 2018

Gọi d = UCLN(2n+3,4n+8)

Suy ra 2n+3 ⋮ d và 4n+8d

Ta có 2n+3d => 2.(2n+3)d => 4n+6d

Vì 4n+8d và 4n+6d nên (4n+8) – (4n+6)d => 2d => d ∈ {1;2}

Vì 2n+3 là số lẻ nên d = 2 là không thỏa mãn. Vậy d = 1

Vậy với mọi số tự nhiên n thì 2n+3 và 4n+8 là nguyên tố cùng nhau

23 tháng 2 2019

a, Đặt d = ƯCLN(2n+3;4n+8)

=> 2(2n+3) ⋮ d; (4n+8) ⋮ d

=> [(4n+8) – (4n+6)]d

=> 2d => d ⋮ {1;2}

Mặt khác 2n+3 là số lẻ nên d ≠ 2.

Vậy d = 1. Hay với mọi số tự nhiên n thì các số 2n+3 và 4n+8 nguyên tố cùng nhau

b, Đặt d = ƯCLN(2n+5;3n+7)

=> 3(2n+5)d; 2(3n+7)d

=> [(6n+15) – (6n+14)]d

=> 1d => d = 1

Vậy d = 1. Hay với mọi số tự nhiên n thì các số 2n+5 và 3n+7 nguyên tố cùng nhau.

c, Đặt d = ƯCLN(7n+10;5n+7)

=> 5(7n+10)d; 7(5n+7)d

=> [(35n+50) – (35n+49)]d

=> 1d => d = 1

Vậy d = 1. Hay với mọi số tự nhiên n thì các số 7n+10 và 5n+7 nguyên tố cùng nhau

a: \(d=UCLN\left(n+1;n+2\right)\)

\(\Leftrightarrow n+2-n-1⋮d\)

hay d=1

b: \(d=UCLN\left(2n+2;2n+3\right)\)

\(\Leftrightarrow2n+3-2n-2⋮d\)

hay d=1