Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
b:
x=9 nên x+1=10
\(M=x^{10}-x^9\left(x+1\right)+x^8\left(x+1\right)-x^7\left(x+1\right)+...-x\left(x+1\right)+x+1\)
\(=x^{10}-x^{10}-x^9+x^9+x^8-x^8-x^7+...-x^2-x+x+1\)
=1
c: \(N=\left(1+2+2^2+2^3+2^4\right)+2^5\left(1+2+2^2+2^3+2^4\right)+2^{10}\left(1+2+2^2+2^3+2^4\right)\)
\(=31\left(1+2^5+2^{10}\right)⋮31\)
Đề đúng : Chứng minh : \(\frac{x^4+4}{x\left(x^2+2\right)-2x^2-\left(x-1\right)^2-1}=\frac{x^2+2x+2}{x-1}\)
Điều kiện : \(x\ne1\)
Phân tích : \(x^4+4=\left(x^4+4x^2+4\right)-4x^2=\left(x^2+2\right)^2-\left(2x\right)^2=\left(x^2-2x+2\right)\left(x^2+2x+2\right)\)
\(x\left(x^2+2\right)-2x^2-\left(x-1\right)^2-1=x^3+2x-2x^2-\left(x^2-2x+1\right)-1\)
\(=x^3-3x^2+4x-2=\left(x^3-3x^2+3x-1\right)+\left(x-1\right)=\left(x-1\right)^3+\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2-2x+2\right)\)
Suy ra : \(\frac{x^4+4}{x\left(x^2+2\right)-2x^2-\left(x-1\right)^2-1}=\frac{\left(x^2-2x+2\right)\left(x^2+2x+2\right)}{\left(x-1\right)\left(x^2-2x+2\right)}=\frac{x^2+2x+2}{x-1}\)
c) Đặt \(f\left(x\right)=x^{10}-10x+9\)
Giả sử \(f\left(x\right)⋮\left(x-1\right)^2\)
\(\Rightarrow f\left(x\right)=\left(x-1\right)^2Q\left(x\right)\)
\(\Leftrightarrow f\left(1\right)=\left(1-1\right)^2Q\left(1\right)\)
\(=0\)
\(\Leftrightarrow1^{10}-10.1+9=0\)
\(\Leftrightarrow0=0\)( đúng)
\(\Rightarrow\)điều giả sử đúng
\(\Rightarrow f\left(x\right)⋮\left(x-1\right)^2\left(đpcm\right)\)
Bài này bạn áp dụng phương pháp hệ số bất định hoặc phương pháp xét giá trị riêng
x2-2x+1 = (x-1)2
x10-10x + 9=x10-9x-x+9=x(x9-1)-9(x-1)
= x(x-1)(...)-9(x-1)
=(x-1)[x(...)-9]
Đoạn ... bạn tự khai triển nha chứ mình đánh máy mỏi lắm :v bạn nhân vô hết rồi tách cái -9 ra làm 9 cái -1 rồi cầm hằng đẳng thức như mình làm của cái x9-1 là sẽ suy ra được thêm một cái nhân tử x-1 như vậy bài toán được chứng minh.
trả lời rõ đi
mh k bt khai triển tiếp