K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2017

Ta có : \(x^2+2y^2+2xy+y+1\)

\(=\left(x^2+2xy+y^2\right)+\left(y^2+y+\dfrac{1}{4}\right)+\dfrac{3}{4}\)

\(=\left(x+y\right)^2+\left(y+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x,y\)

30 tháng 3 2017

\(x^3+y^3\ge x^2y+xy^2\forall x,y\ge0\left(1\right)\)

*) Xét \(x=y=0\) thì \(\left(1\right)\) luôn đúng

*) Xét \(x,y>0\) ta có: \(VT=x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\)

Áp dụng BĐT AM-GM ta có:

\(x^2+y^2\ge2xy\Rightarrow x^2-xy+y^2\ge2xy-xy=xy\)

\(\Rightarrow VT=\left(x+y\right)\left(x^2-xy+y^2\right)\ge xy\left(x+y\right)\left(2\right)\)

Lại có: \(VP=x^2y+xy^2=xy\left(x+y\right)\left(3\right)\)

Từ \(\left(2\right)\)\(\left(3\right)\) suy ra BĐT được chứng minh

Vậy \(x^3+y^3\ge x^2y+xy^2\forall x,y\ge0\)

30 tháng 3 2017

x3+y3\(\geq\) x2y + xy2, \(\forall\)x\(\geq\)0,\(\forall\)y\(\geq\)0

Xét x=0,y=0 thì bất đẳng thức này luôn đúng.(*)

Xét x>0,y>0,ta có CM bất đẳng thức đó luôn đúng

x3+y3\(\geq\) x2y+xy2

\(\Leftrightarrow\) x3+y3-x2y-xy2\(\geq\)0

\(\Leftrightarrow\) (x3-x2y) + (y3-xy2) \(\geq\)0

\(\Leftrightarrow\) x2(x-y) - y2(x-y) \(\geq\) 0

\(\Leftrightarrow\) (x-y)(x2-y2) \(\geq\) 0

\(\Leftrightarrow\) (x-y)(x-y)(x+y) \(\geq\) 0

\(\Leftrightarrow\) (x-y)2(x+y) \(\geq\) 0 (1)

Ta có (x-y)2\(\geq\)0, x+y >0(vì x>0,y>0)

Nên bất phương trình (1); (x-y)2(x+y) \(\geq\) 0(luôn đúng)(**)

Từ(*) và (**) suy ra BĐT được chứng minh:

x3+y3\(\geq\) x2y+xy2, \(\forall\)x\(\geq\)0,\(\forall\)y\(\geq\)0

Dấu "=" xảy ra khi và chỉ khi x=y.

19 tháng 6 2018

1) Bất đẳng thức cần chứng minh

\(\Leftrightarrow\) a2 + b2 + c2 + d2 + \(2\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\ge\left(a+c\right)^2+\left(b+d\right)^2\)

\(\Leftrightarrow\) \(ac+bd\le\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\left(1\right)\)

Nếu : ac + bd < 0 : BĐT luôn đúng

Nếu : ac + bd \(\ge\) 0 : Thì (1) tương đương

( ac + bd )2 \(\le\) ( a2 + b2 )( c2 + d2 )

\(\Leftrightarrow\) \(\left(ac\right)^2+\left(bd\right)^2+2abcd\le\left(ac\right)^2+\left(ad\right)^2+\left(bc\right)^2+\left(bd\right)^2\)

\(\Leftrightarrow\) \(\left(ad\right)^2+\left(bc\right)^2-2abcd\ge0\)

\(\Leftrightarrow\) \(\left(ad-bc\right)^2\ge0\) , luôn đúng , vậy bài toán được chứng minh

19 tháng 6 2018

2) Chọn :\(\left\{{}\begin{matrix}a=2\cos x.\cos y\\c=2\sin x.\sin y\\b=d=\sin\left(x-y\right)\end{matrix}\right.\)

Từ câu 1) ta có :

\(\sqrt{4\cos^2x.\cos^2y+\sin^2\left(x-y\right)}+\sqrt{4\sin^2x.\sin^2y+\sin^2\left(x-y\right)}\)

\(\ge\sqrt{\left(2\cos x.\cos y+2\sin x.\sin y\right)^2+\left(2\sin\left(x-y\right)\right)^2}\)

\(\ge\sqrt{4\cos^2\left(x-y\right)+4\sin^2\left(x-y\right)}=2\)

9 tháng 10 2019

Giải sách bài tập Toán 10 | Giải sbt Toán 10

27 tháng 1 2018

\(3x^2+5y^2-2x-2xy+1\)

\(=\left(x^2-2x+1\right)+\left(x^2-2xy+y^2\right)+x^2+4y^2\)

\(=\left(x-1\right)^2+\left(x-y\right)^2+x^2+4y^2\ge0\forall x:y\)

Do dấu bằng không xảy ra \(\Rightarrow\left(x+1\right)^2+\left(x-y\right)^2+x^2+4y^2>0\forall x:y\)

10 tháng 2 2018

dấu bằng xẩy ra thì sao??

20 tháng 3 2019

b)\(\sqrt{5x^2+2xy+2y^2}+\sqrt{2x^2+2xy+5y^2}=3\left(x+y\right)\)

\(\Rightarrow\left(\sqrt{5x^2+2xy+2y^2}+\sqrt{2x^2+2xy+5y^2}\right)^2=\left(3\left(x+y\right)\right)^2\)

\(\Leftrightarrow\sqrt{\left(5x^2+2xy+2y^2\right)\left(2x^2+2xy+5y^2\right)}=x^2+7xy+y^2\)

\(\Rightarrow\left(5x^2+2xy+2y^2\right)\left(2x^2+2xy+5y^2\right)=\left(x^2+7xy+y^2\right)^2\)

\(\Leftrightarrow9\left(x-y\right)^2\left(x+y\right)^2=0\)\(\Leftrightarrow\left[{}\begin{matrix}x=y\\x=-y\end{matrix}\right.\)

\(\rightarrow\left(x;y\right)\in\left\{\left(0;0\right),\left(1;1\right)\right\}\)

20 tháng 3 2019

caau a) binh phuong len ra no x=y tuong tu