K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 1 2023

\(8,1-\left(x-6\right)=4\left(2-2x\right)\)

\(\Leftrightarrow1-x+6=8-8x\)

\(\Leftrightarrow-x+8x=8-1-6\)

\(\Leftrightarrow7x=1\)

\(\Leftrightarrow x=\dfrac{1}{7}\)

\(9,\left(3x-2\right)\left(x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-2=0\\x+5=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-5\end{matrix}\right.\)

\(10,\left(x+3\right)\left(x^2+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x^2+2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=\varnothing\end{matrix}\right.\)

 

11 tháng 1 2023

`8)1-(x-5)=4(2-2x)`

`<=>1-x+5=8-6x`

`<=>5x=2<=>x=2/5`

`9)(3x-2)(x+5)=0`

`<=>[(x=2/3),(x=-5):}`

`10)(x+3)(x^2+2)=0`

  Mà `x^2+2 > 0 AA x`

 `=>x+3=0`

`<=>x=-3`

`11)(5x-1)(x^2-9)=0`

`<=>(5x-1)(x-3)(x+3)=0`

`<=>[(x=1/5),(x=3),(x=-3):}`

`12)x(x-3)+3(x-3)=0`

`<=>(x-3)(x+3)=0`

`<=>[(x=3),(x=-3):}`

`13)x(x-5)-4x+20=0`

`<=>x(x-5)-4(x-5)=0`

`<=>(x-5)(x-4)=0`

`<=>[(x=5),(x=4):}`

`14)x^2+4x-5=0`

`<=>x^2+5x-x-5=0`

`<=>(x+5)(x-1)=0`

`<=>[(x=-5),(x=1):}`

22 tháng 12 2020

Rảnh rỗi thật sự .-.

undefined

5 tháng 9 2021

a. (x - 22) - 1 = 0

<=> x - 4 - 1 = 0

<=> x = 5

b. 4 - (x - 2)2 = 0

<=> 22 - (x - 2)2 = 0

<=> (2 - x + 2)(2 + x - 2) = 0

<=> x(4 - x) = 0

<=> \(\left[{}\begin{matrix}x=0\\4-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)

 

5 tháng 9 2021

d. (3x - 2)2 - (2x + 3)2 = 5(x + 4)(x - 4)

<=> (3x - 2 - 2x - 3)(3x - 2 + 2x + 3) = 5(x2 - 16)

<=> (x - 5)(5x + 1) = 5x2 - 80

<=> 5x2 + x - 25x - 5 = 5x2 - 80

<=> 5x2 - 5x2 + x - 25x = -80 + 5

<=> -24x = -75

<=> x = \(\dfrac{25}{8}\)

NV
26 tháng 2 2020

1. \(x^2\left(x+1\right)+x+1=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2+1\right)=0\)

\(\Leftrightarrow x+1=0\Rightarrow x=-1\)

2. \(\left(x-2\right)\left(6x+2\right)+\left(x-2\right)^2=0\)

\(\Leftrightarrow\left(x-2\right)\left(6x+2+x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right).7x=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\7x=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=2\\x=0\end{matrix}\right.\)

NV
26 tháng 2 2020

3.

\(x^2-5x+6=0\)

\(\Leftrightarrow x^2-2x-3x+6=0\)

\(\Leftrightarrow x\left(x-2\right)-3\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x-2\right)=0\Rightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)

4.

\(x^2-x-6=0\)

\(\Leftrightarrow x^2+2x-3x-6=0\)

\(\Leftrightarrow x\left(x+2\right)-3\left(x+2\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)

9 tháng 4 2017

(2x+9)/(x+1)(x+8)-(2x+15)/(x+8)(x+7)+(2x+10)/(x+7)(x+3)=4/3

(x+1+x+8)/(x+1)(x+8)-(x+8+x+7)/(x+8)(x+7)+(x+7+x+3)/(x+7)(x+3)=4/3

1/(x+8)+1/(x+1)-1/(x+7)-1/(x+8)+1/(x+7)+1/(x+3)=4/3

1/(x+1)+1/(x+3)=4/3

(x+3+x+1)/(x+3)(x+1)=4/3

(2x+4)/(x+3)(x+1)=4/3

=>(2x+4).3=(x+3)(x+1).4

6(x+2)=4(x+3)(x+1)

3(x+2)=2(x+3)(x+1)

3x+6=2(x^2+4x+3)

3x+6=2x^2+8x+6

2x^2+8x+6-3x-6=0

2x^2+5x=0

x(2x+5)=0

=> x=0 hoac 2x+5=0

=> x=0 hoac x=-5/2 

HQ
Hà Quang Minh
Giáo viên
13 tháng 9 2023

a) \(8 - \left( {x - 15} \right) = 2.\left( {3 - 2x} \right)\) 

\(8 - x + 15 = 6 - 4x\)

\( - x + 4x = 6 - 8 - 15\)

\(3x =  - 17\)

\(x = \left( { - 17} \right):3\)

\(x = \dfrac{{ - 17}}{3}\)

Vậy nghiệm của phương trình là \(x = \dfrac{{ - 17}}{3}\).

b) \( - 6\left( {1,5 - 2u} \right) = 3\left( { - 15 + 2u} \right)\)

\( - 9 + 12u =  - 45 + 6u\)

\(12u - 6u =  - 45 + 9\)

\(u = \left( { - 36} \right):6\)

\(6u =  - 36\)

\(u =  - 6\)

Vậy nghiệm của phương trình là \(u =  - 6\).

c) \({\left( {x + 3} \right)^2} - x\left( {x + 4} \right) = 13\)

\(\left( {{x^2} + 6x + 9} \right) - \left( {{x^2} + 4x} \right) = 13\)

\({x^2} + 6x + 9 - {x^2} - 4x = 13\)

\(\left( {{x^2} - {x^2}} \right) + \left( {6x - 4x} \right) = 13 - 9\)

\(2x = 4\)

\(x = 4:2\)

\(x = 2\)

Vậy nghiệm của phương trình là \(x = 2\).

d) \(\left( {y + 5} \right)\left( {y - 5} \right) - {\left( {y - 2} \right)^2} = 5\)

\(\left( {{y^2} - 25} \right) - \left( {{y^2} - 4y + 4} \right) = 5\)

\({y^2} - 25 - {y^2} + 4y - 4 = 5\)

\(\left( {{y^2} - {y^2}} \right) + 4y = 5 + 4 + 25\)

\(4y = 34\)

\(y = 34:4\)

\(y = \dfrac{{17}}{2}\)

Vậy nghiệm của phương trình là \(y = \dfrac{{17}}{2}\).