Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :\(100-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)
=\(\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}=\)\(\left(1-1\right)+\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{3}\right)\)\(+...+\left(1-\frac{1}{100}\right)\)
=\(\left(1+1+1+....+1\right)\)\(-\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)\)
= \(99-\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)\)
= \(100-1-\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)\)
=\(100-\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)\)= vế trên (đpcm)
\(S=100-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)
\(S=\left(1+1+...+1\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)
\(S=\left(1-1\right)+\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{3}\right)+...+\left(1-\frac{1}{100}\right)\)
\(S=\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}\)
\(\RightarrowĐPCM\)
a,1/102+1/112+1/122+...+1/1002<1/9.10+1/10.11+1/11.12+...+1/99.100=1/9-1/10+1/10-1/11+...+1/99-1/100
=1/9-1/100=91/900<3/4
Vậy 1/102+1/112+1/122+...+1/1002<3/4
b,1/22+1/32+1/42+...+1/1002<1/1.2+1/2.3+1/3.4+...+1/99.100=1-1/2+1/2-1/3+1/3-1/4+...+1/99-1/100
=1-1/100=99/100
Vậy 1/22+1/32+1/42+...+1/1002<99/100
c,1/22+1/32+1/42+...+1/1002<1/22+(1/2.3+1/3.3+...+1/99.100)=1/4+(1/2-1/3+1/3-1/4+...+1/99-1/100)
=1/4+(1/2-1/100)=1/4+49/100=74/100<3/4=75/100
Vậy 1/22+1/32+1/42+...+1/1002<3/4
\(a)\) Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\) ta có :
\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(A< 1-\frac{1}{100}=\frac{99}{100}< 1\)
Vậy \(A< 1\)
Chúc bạn học tốt ~
\(a)\) Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2010^2}\) ta có :
\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2009.2010}\)
\(A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2009}-\frac{1}{2010}\)
\(A< 1-\frac{1}{2010}=\frac{2009}{2010}< 1\)
\(\Rightarrow\)\(A< 1\) ( đpcm )
Vậy \(A< 1\)
Chúc bạn học tốt ~
Tham khảo nha bạn :
Câu hỏi của Trần Minh Hưng - Toán lớp | Học trực tuyến
a) \(A=\frac{4}{3}+\frac{7}{3^2}+\frac{10}{3^3}+...+\frac{301}{3^{100}}\)
\(\Rightarrow3A=4+\frac{7}{3}+\frac{10}{3^2}+...+\frac{301}{3^{100}}\)
\(\Rightarrow3A-A=\left(4+\frac{7}{3}+\frac{10}{3^2}+...+\frac{301}{3^{99}}\right)-\left(\frac{4}{3}+\frac{7}{3^2}+...+\frac{301}{3^{100}}\right)\)
\(\Rightarrow2A=4+1+\frac{1}{3}+...+\frac{1}{3^{98}}-\frac{301}{3^{100}}\)
Đặt \(F=1+\frac{1}{3}+...+\frac{1}{3^{98}}\)
\(\Rightarrow3F=3+1+...+\frac{1}{3^{97}}\)
\(\Rightarrow3F-F=\left(3+...+\frac{1}{3^{97}}\right)-\left(1+...+\frac{1}{3^{98}}\right)\)
\(\Rightarrow2F=3-\frac{1}{3^{98}}< 3\)
\(\Rightarrow F< \frac{3}{2}\)
\(\Rightarrow2A< 4+\frac{3}{2}\)
\(\Rightarrow2A< \frac{11}{2}\)
\(\Rightarrow A< \frac{11}{4}\left(đpcm\right)\)
2. \(B=\frac{11}{3}+\frac{17}{3^2}+\frac{23}{3^3}+...+\frac{605}{3^{100}}\)
\(\Rightarrow3B=11+\frac{17}{3}+\frac{23}{3^2}+...+\frac{605}{3^{99}}\)
\(\Rightarrow3B-B=\left(11+...+\frac{605}{3^{99}}\right)-\left(\frac{11}{3}+...+\frac{605}{3^{100}}\right)\)
\(\Rightarrow2B=11+2+\frac{2}{3}+...+\frac{2}{3^{98}}-\frac{605}{3^{100}}\)
Đặt \(D=2+\frac{2}{3}+...+\frac{2}{3^{98}}\)
\(\Rightarrow3D=6+2+...+\frac{2}{3^{97}}\)
\(\Rightarrow2D=6-\frac{2}{3^{98}}< 6\)( làm tắt )
\(\Rightarrow2D< 6\)
\(\Rightarrow D< 3\)
\(\Rightarrow2B< 11+3\)
\(\Rightarrow2B< 14\)
\(\Rightarrow B< 7\left(đpcm\right)\)
Đặt A= 200- (3+\(\frac{2}{3}+\frac{2}{4}+.....+\frac{2}{100}\))
=\(197-\frac{2}{3}-\frac{2}{4}-....-\frac{2}{100}\)
=\(\frac{197.2}{2}-\frac{2}{3}-\frac{2}{4}-....-\frac{2}{100}\)
=\(2.\left(\frac{196+1}{2}-\frac{1}{3}-\frac{1}{4}-.....-\frac{1}{100}\right)\)
=\(2\left(\frac{196}{2}+\frac{1}{2}-\frac{1}{3}-.....-\frac{1}{100}\right)\)
=\(2\left(98+\frac{1}{2}-\frac{1}{3}-\frac{1}{4}-.....-\frac{1}{100}\right)\)
=\(2\left(\frac{1}{2}+1-\frac{1}{3}+1-\frac{1}{4}+.....+1-\frac{1}{100}\right)\)
=\(2\left(\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+.....+\frac{99}{100}\right)\)
Khi đó \(\frac{200-\left(3+\frac{2}{3}+\frac{2}{4}+....+\frac{2}{100}\right)}{\frac{1}{2}+\frac{2}{3}+....+\frac{99}{100}}\)=\(\frac{2\left(\frac{1}{2}+\frac{2}{3}+....+\frac{99}{100}\right)}{\frac{1}{2}+\frac{2}{3}+....+\frac{99}{100}}\)=2(đpcm)
Đặt A là tên biểu thức trên
Ta có: \(A=\frac{200-\left(3+\frac{2}{3}+\frac{2}{4}+\frac{2}{5}+...+\frac{2}{100}\right)}{\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}}\)
\(A=\frac{200-2\left(\frac{3}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{100}\right)}{\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{3}\right)+\left(1-\frac{1}{4}\right)+....+\left(1-\frac{1}{100}\right)}\)
\(A=\frac{2\left[100-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{100}\right)\right]}{100-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)}\)
\(A=2\)
yamate