K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: TH1: n=2k

A=(n+2)(n+5)

=(2k+2)(2k+5)

=2(k+1)(2k+5)\(⋮\)2(1)

TH2: n=2k+1

\(A=\left(n+2\right)\left(n+5\right)\)

\(=\left(2k+1+2\right)\left(2k+1+5\right)\)

\(=\left(2k+3\right)\left(2k+6\right)\)

\(=2\left(k+3\right)\left(2k+3\right)⋮2\)(2)

Từ (1),(2) suy ra \(A⋮2\)

b: TH1: n=3k

\(B=\left(2n+3\right)\left(n+6\right)\left(5n+2\right)\)

\(=\left(2\cdot3k+3\right)\left(3k+6\right)\left(5\cdot3k+2\right)\)

\(=3\left(k+2\right)\left(6k+3\right)\left(15k+2\right)⋮3\left(3\right)\)

TH2: n=3k+1

\(B=\left(2n+3\right)\left(n+6\right)\left(5n+2\right)\)

\(=\left[2\left(3k+1\right)+3\right]\left[3k+1+6\right]\left[5\left(3k+1\right)+2\right]\)

\(=\left(6k+2+3\right)\left(3k+7\right)\left(15k+5+2\right)\)

=(6k+5)(3k+7)(15k+7)

=>B không chia hết cho 3

Vậy: B không chia hết cho 3 với mọi n

29 tháng 9 2015

Bài 1 : 

Ta có : 3a + 3b và a + 2b đều chia hết cho 3

=> ( 3a + 3b ) - ( a + 2b ) chia hết cho 3

=> 2a + b chia hết cho 3 ( đpcm )

Bài 2 : 

Mình có sách có bài này nhưng mà chưa học nên cũng không hiểu . Nếu bạn cần thì cứ nói với mình mình sẽ giúp

11 tháng 4 2018

hayyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy

26 tháng 1 2016

a,  (3n+2) - (n-6) = 3n+2-n+6 = 2n+8 luôn chia hết cho 2

b, (n+2) + (n+4) + 6 = n+2+n+4+6 = 2n+12 luôn chia hết cho 2

c, (n+3)+2(n+4)+1 = n+3+2n+8+1 = 3n+12 luôn chia hết cho 3

26 tháng 10 2022

a:\(A=n^2+n+6=n\left(n+1\right)+6\)

Vì n;n+1 là hai số liên tiếp

nên n(n+1) có tận cùng là 0;2;6

=>A có tận cùng là 6;8;2

=>A ko chia hết cho 5

b: n(n+1) là hai số liên tiếp

nên n(n+1) chia hết cho 2

=>n(n+1)+1 ko chia hết cho 2

=>B ko chia hết cho 4

Đặt n = 2k , ta có                      ( đk k >= 1 do n là một số chẵn lớn hơn 4)

\(\left(2k\right)^4-4\times\left(2k\right)^3-4\times\left(2k\right)^2+16\times2k\)

\(=16k^4-32k^3-16k^2+32k\)

\(=16k^2\left(k^2-1\right)-32k\left(k^2-1\right)\)

\(=16k\times k\left(k-1\right)\left(k+1\right)-32\times k\left(k-1\right)\left(k+1\right)\)

Nhận xét \(\left(k-1\right)k\left(k+1\right)\)  là 3 số tự nhiên liên tiếp nên 

\(\left(k-1\right)k\left(k+1\right)\) chia hết cho 3

Suy ra điều cần chứng minh

23 tháng 11 2016

câu 1:

a, giả sử 2 số chẵn liên tiếp là 2k và (2k+2) ta có:

2k(2k+2) = 4k2+4k = 4k(k+1) chia hết cho 8 vì 4k chia hết cho 4, k(k+1) chia hết cho 2

b, giả sử 3 số nguyên liên tiếp là a,a+1,a+2 với mọi a thuộc Z

  • a,a+1,a+2 là 3 số nguyên liên tiếp nên tồn tại duy nhất một số chẵn hoặc có 2 số chẵn nên tích của chúng sẽ chia hết cho 2.

mặt khác vì là 3 số tự nhiên liên tiếp nên sẽ chia hết cho 3.

vậy tích của 3 số nguyên liên tiếp chia hết cho 6.

c, giả sử 5 số nguyên liên tiếp là a,a+1,a+2, a+3,a+4 với mọi a thuộc Z

  • vì là 5 số nguyên liên tiếp nên sẽ tồn tại 2 số chẵn liên tiếp nên theo ý a tích của chúng choa hết cho 8.
  • tích của 3 số nguyên liên tiếp chia hết cho 3.
  • tích của 5 số nguyên liên tiếp chia hết cho 5.

vậy tích của 5 số nguyên liên tiếp chia hết cho 120.

câu 2:

a, a3 + 11a = a[(a- 1)+12] = (a - 1)a(a+1) + 12a

  • (a - 1)a(a+1) chia hết cho 6 ( theo ý b câu 1)
  • 12a chia hết cho 6.

vậy a3 + 11a chia hết cho 6.

b, ta có a- a = a(a2 - 1) = (a-1)a(a+1) chia hết cho 3 (1) 

mn(m2-n2) = m3n - mn3 = m3n - mn + mn - mn3 = n( m- m) - m(n3 -n)

theo (1) mn(m2-n2) chia hết cho 3.

c, ta có: a(a+1)(2a+10 = a(a+1)(a -1+ a +2) = [a(a+1)(a - 1) + a(a+1)(a+2)] chia hết cho 6.( théo ý b bài 1)

25 tháng 9 2021

\(a,\left(n+10\right)\left(n+15\right)\)

Với n lẻ \(\Rightarrow n=2k+1\left(k\in N\right)\)

\(\Rightarrow\left(n+10\right)\left(n+15\right)=\left(2k+11\right)\left(2k+16\right)=2\left(k+8\right)\left(2k+11\right)⋮2\)

Với n chẵn \(\Rightarrow n=2q\left(q\in N\right)\)

\(\Rightarrow\left(n+10\right)\left(n+15\right)=\left(2q+10\right)\left(2q+15\right)=2\left(q+5\right)\left(2q+15\right)⋮2\)

Suy ra đpcm

\(b,\) Với n chẵn \(\Rightarrow n=2k\Rightarrow n\left(n+1\right)\left(2n+1\right)⋮2\)

Với n lẻ \(\Rightarrow n=2q+1\Rightarrow n+1=2q+2=2\left(q+1\right)⋮2\Rightarrow n\left(n+1\right)\left(2n+1\right)⋮2\)

Vậy \(n\left(n+1\right)\left(2n+1\right)⋮2\)

Với \(n=3k\Rightarrow n\left(n+1\right)\left(2n+1\right)⋮3\)

Với \(n=3k+1\Rightarrow2n+1=6k+3=3\left(2k+1\right)⋮3\Rightarrow n\left(n+1\right)\left(2n+1\right)⋮3\)

Với \(n=3k+2\Rightarrow n+1=3\left(k+1\right)⋮3\Rightarrow n\left(n+1\right)\left(2n+1\right)⋮3\)

Vậy \(n\left(n+1\right)\left(2n+1\right)⋮3\)

Suy ra đpcm