K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 11 2014

1:a:4827;6915

b:5670

2:825

b:9180;21780

 

22 tháng 11 2014

bài 1: a) 4827 ; 6915 .b) 5670

bài 2:a) 825.b) 9180;21780

 

 

24 tháng 8 2016

\(=a\left(a+2\right)\left(25a^2-1\right)=\left(a^2+2a\right)\left(25a^2-1\right)=\)

\(=25a^4-a^2+50a^3-2a=24a^4+48a^3+a^4+2a^3-a^2-2a\)

Ta có \(24a^4+48a^3\) chia hết cho 24

Xét

\(a^4+2a^3-a^2-2a=a^3\left(a+2\right)-a\left(a+2\right)=\left(a+2\right)\left(a^3-a\right)\)

\(=a\left(a^2-1\right)\left(a+2\right)=a\left(a-1\right)\left(a+1\right)\left(a+2\right)\)

\(=\left(a-1\right)a\left(a+1\right)\left(a+2\right)\)

Đây là tích 4 số tự nhiên liên tiếp

Trong 4 số tự nhiên liên tiếp tồn tại 2 số chẵn liên tiếp trong đó có 1 số chia hết cho 4 số chẵn còn lại chia hết cho 2 => tích 4 số tự nhiên liên tiếp chia hết cho 8

Trong 3 số tự nhiên liên tiếp sữ tồn tại 1 số chia hết cho 3

=> tích 4 số tự nhiên liên tiếp chia hết cho cả 3 vag 8, mà 3 và 8 nguyên tố cùng nhau => tích 4 số tự nhiên liên tiếp chia hết cho 24

=> \(\left(a-1\right)a\left(a+1\right)\left(a+2\right)\) chia hết cho 24

Vậy \(a\left(a+2\right)\left(25a^2-1\right)\) chia hết cho 24

2 tháng 1 2019

Hàm số f(x) đâu có y,z (y là tên hàm số rồi còn gì)??

ĐK: \(x\inℤ\)

TA có: \(y=f\left(x\right)=ax^2+bx+c⋮5\)

Vậy \(f\left(x\right)=ax^2+bx+c\) có dạng \(5k\) (k nguyên)

Nếu \(x⋮5\Rightarrow x\)có dạng \(5t\)

Thay vào,ta có: \(f\left(x\right)=25at^2+5bt+c=5t\left(5at+b\right)+c=5k\)  (1)

Suy ra \(c=5k-5t\left(5at+b\right)=5\left[k-t\left(5at+b\right)\right]\)  (2)

Thay (2) và (1) suy ra nếu x chia hết cho 5 thì f(x) chia hết cho 5 (thỏa mãn)

Nếu \(x⋮̸5\Rightarrow x\) có dạng 5t + 1

Thay vào và chứng minh tương tự để suy ra nếu x không chia hết cho 5 thì f(x) không chia hết cho 5 (trái với giả thiết)

Từ đó suy ra đpcm

23 tháng 6 2015

giai duoc roi cam on nhiu

18 tháng 2 2016

cho mình cách làm bài 3 phần b ?